Fully-coupled fluid-structure interaction simulations of a supersonic parachute

Jonathan Boustani, Michael F. Barad, Cetin C. Kiris, Christoph Brehm

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations


A validated computational fluid-structure interaction method for simulating the complex interaction between the large deformation of very thin, highly deformable structures and compressible flows is extended to consider large-scale problems in supersonic flows using parallel computing. The coupled fluid-structure interaction system is solved in a partitioned, or weakly-coupled, manner. The foundations of the applied fluid-structure interaction method are a higher-order, block-structured Cartesian, sharp immersed boundary method for the compressible Navier-Stokes equations and a computational structural dynamics solver employing a geometrically nonlinear 3-node shell element based on the mixed interpolation of tensorial components formulation. The method is applied to large deformation fluid-structure interaction validation cases before being applied to the inflation of a supersonic parachute in the upper Martian atmosphere where the goal is to demonstrate the capabilities of the solver when considering large-scale problems in supersonic flows.

Original languageEnglish
Title of host publicationAIAA Aviation 2019 Forum
Number of pages22
StatePublished - 2019
EventAIAA Aviation 2019 Forum - Dallas, United States
Duration: Jun 17 2019Jun 21 2019

Publication series

NameAIAA Aviation 2019 Forum


ConferenceAIAA Aviation 2019 Forum
Country/TerritoryUnited States

Bibliographical note

Publisher Copyright:
© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.

ASJC Scopus subject areas

  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Aerospace Engineering


Dive into the research topics of 'Fully-coupled fluid-structure interaction simulations of a supersonic parachute'. Together they form a unique fingerprint.

Cite this