TY - JOUR
T1 - Functional analysis of Na+/K+-ATPase isoform distribution in rat ventricular myocytes
AU - Despa, Sanda
AU - Bers, Donald M.
PY - 2007/7
Y1 - 2007/7
N2 - The Na+/K+-ATPase (NKA) is the main route for Na + extrusion from cardiac myocytes. Different NKA α-subunit isoforms are present in the heart. NKA-α1 is predominant, although there is a variable amount of NKA-α2 in adult ventricular myocytes of most species. It has been proposed that NKA-α2 is localized mainly in T-tubules (TT), where it could regulate local Na+/Ca2+ exchange and thus cardiac myocyte Ca2+. However, there is controversy as to where NKA-α1 vs. NKA-α2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (I Pump) measurements and the different ouabain sensitivity of NKA-α1 (low) and NKA-α2 (high) in rat heart. Ouabain-dependent IPump inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-α2, K1/2 = 0.38 ± 0.16 μM) that accounts for 29.5 ± 1.3% of IPump and a low-affinity isoform (NKA-α1, K1/2 = 141 ± 17 μM) that accounts for 70.5% of IPump. Detubulation decreased cell capacitance from 164 ± 6 to 120 ± 8 pF and reduced IPump density from 1.24 ± 0.05 to 1.02 ± 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-α2 accounted for only 18.2 ± 1.1% of IPump. Thus, -∼63% of IPump generated by NKA-α2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-α2/NKA-α1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-α2 is ∼-4.5 times higher in the T-tubules vs. ESL, whereas NKA-α1 is almost uniformly distributed between the TT and ESL.
AB - The Na+/K+-ATPase (NKA) is the main route for Na + extrusion from cardiac myocytes. Different NKA α-subunit isoforms are present in the heart. NKA-α1 is predominant, although there is a variable amount of NKA-α2 in adult ventricular myocytes of most species. It has been proposed that NKA-α2 is localized mainly in T-tubules (TT), where it could regulate local Na+/Ca2+ exchange and thus cardiac myocyte Ca2+. However, there is controversy as to where NKA-α1 vs. NKA-α2 are localized in ventricular myocytes. Here, we assess the TT vs. external sarcolemma (ESL) distribution functionally using formamide-induced detubulation of rat ventricular myocytes, NKA current (I Pump) measurements and the different ouabain sensitivity of NKA-α1 (low) and NKA-α2 (high) in rat heart. Ouabain-dependent IPump inhibition in control myocytes indicates a high-affinity NKA isoform (NKA-α2, K1/2 = 0.38 ± 0.16 μM) that accounts for 29.5 ± 1.3% of IPump and a low-affinity isoform (NKA-α1, K1/2 = 141 ± 17 μM) that accounts for 70.5% of IPump. Detubulation decreased cell capacitance from 164 ± 6 to 120 ± 8 pF and reduced IPump density from 1.24 ± 0.05 to 1.02 ± 0.05 pA/pF, indicating that the functional density of NKA is significantly higher in TT vs. ESL. In detubulated myocytes, NKA-α2 accounted for only 18.2 ± 1.1% of IPump. Thus, -∼63% of IPump generated by NKA-α2 is from the TT (although TT are only 27% of the total sarcolemma), and the NKA-α2/NKA-α1 ratio in TT is significantly higher than in the ESL. The functional density of NKA-α2 is ∼-4.5 times higher in the T-tubules vs. ESL, whereas NKA-α1 is almost uniformly distributed between the TT and ESL.
KW - Detubulation
KW - External sarcolemma
KW - Na/K pump current
KW - Ouabain
KW - T-tubules
UR - http://www.scopus.com/inward/record.url?scp=34547107316&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547107316&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00597.2006
DO - 10.1152/ajpcell.00597.2006
M3 - Article
C2 - 17392375
AN - SCOPUS:34547107316
SN - 0363-6143
VL - 293
SP - C321-C327
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
IS - 1
ER -