Abstract
Method: Taking advantage of the current rapid development in imaging systems and computer vision algorithms, we present HPGA, a high-throughput phenotyping platform for plant growth modeling and functional analysis, which produces better understanding of energy distribution in regards of the balance between growth and defense. HPGA has two components, PAE (Plant Area Estimation) and GMA (Growth Modeling and Analysis). In PAE, by taking the complex leaf overlap problem into consideration, the area of every plant is measured from topview images in four steps. Given the abundant measurements obtained with PAE, in the second module GMA, a nonlinear growth model is applied to generate growth curves, followed by functional data analysis. Results: Experimental results on model plant Arabidopsis thaliana show that, compared to an existing approach, HPGA reduces the error rate of measuring plant area by half. The application of HPGA on the cfq mutant plants under fluctuating light reveals the correlation between low photosynthetic rates and small plant area (compared to wild type), which raises a hypothesis that knocking out cfq changes the sensitivity of the energy distribution under fluctuating light conditions to repress leaf growth. Availability: HPGA is available at http://www.msu.edu/~jinchen/HPGA.
Original language | English |
---|---|
Article number | S17 |
Journal | BMC Systems Biology |
Volume | 7 |
DOIs | |
State | Published - 2013 |
Bibliographical note
Funding Information:The funding to support the publication fees is Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (grant no. DE-FG02-91ER20021) to DMK and JC. This article has been published as part of BMC Systems Biology Volume 7 Supplement 6, 2013: Selected articles from the 24th International Conference on Genome Informatics (GIW2013). The full contents of the supplement are available online at http://www.biomedcentral.com/bmcsystbiol/supplements/ 7/S6.
Funding Information:
We thank Dr Gregg Howe, Dr Thomas Sharkey, Dr Xiaoming Liu, Dr Yiying Tong and Dr Jun Li for providing inspiring ideas to improve HPGA. We thank Dr Linda Savage for managing the experiment. The project is supported by Center for Advanced Algal and Plant Phenotyping, Michigan State University to DMK, and Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (grant no. DE-FG02-91ER20021) to DMK and JC.
Publisher Copyright:
© 2013 Tessmer et al.
ASJC Scopus subject areas
- Structural Biology
- Modeling and Simulation
- Molecular Biology
- Computer Science Applications
- Applied Mathematics