TY - JOUR
T1 - Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease
AU - Franzmeier, Nicolai
AU - Neitzel, Julia
AU - Rubinski, Anna
AU - Smith, Ruben
AU - Strandberg, Olof
AU - Ossenkoppele, Rik
AU - Hansson, Oskar
AU - Ewers, Michael
AU - Weiner, Michael
AU - Aisen, Paul
AU - Petersen, Ronald
AU - Jack, Clifford R.
AU - Jagust, William
AU - Trojanowki, John Q.
AU - Toga, Arthur W.
AU - Beckett, Laurel
AU - Green, Robert C.
AU - Saykin, Andrew J.
AU - Morris, John C.
AU - Shaw, Leslie M.
AU - Liu, Enchi
AU - Montine, Tom
AU - Thomas, Ronald G.
AU - Donohue, Michael
AU - Walter, Sarah
AU - Gessert, Devon
AU - Sather, Tamie
AU - Jiminez, Gus
AU - Harvey, Danielle
AU - Donohue, Michael
AU - Bernstein, Matthew
AU - Fox, Nick
AU - Thompson, Paul
AU - Schuff, Norbert
AU - DeCArli, Charles
AU - Borowski, Bret
AU - Gunter, Jeff
AU - Senjem, Matt
AU - Vemuri, Prashanthi
AU - Jones, David
AU - Kantarci, Kejal
AU - Ward, Chad
AU - Koeppe, Robert A.
AU - Foster, Norm
AU - Reiman, Eric M.
AU - Chen, Kewei
AU - Mathis, Chet
AU - Landau, Susan
AU - Jicha, Greg
AU - King, Richard
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - In Alzheimer’s diseases (AD), tau pathology is strongly associated with cognitive decline. Preclinical evidence suggests that tau spreads across connected neurons in an activity-dependent manner. Supporting this, cross-sectional AD studies show that tau deposition patterns resemble functional brain networks. However, whether higher functional connectivity is associated with higher rates of tau accumulation is unclear. Here, we combine resting-state fMRI with longitudinal tau-PET in two independent samples including 53 (ADNI) and 41 (BioFINDER) amyloid-biomarker defined AD subjects and 28 (ADNI) vs. 16 (BioFINDER) amyloid-negative healthy controls. In both samples, AD subjects show faster tau accumulation than controls. Second, in AD, higher fMRI-assessed connectivity between 400 regions of interest (ROIs) is associated with correlated tau-PET accumulation in corresponding ROIs. Third, we show that a model including baseline connectivity and tau-PET is associated with future tau-PET accumulation. Together, connectivity is associated with tau spread in AD, supporting the view of transneuronal tau propagation.
AB - In Alzheimer’s diseases (AD), tau pathology is strongly associated with cognitive decline. Preclinical evidence suggests that tau spreads across connected neurons in an activity-dependent manner. Supporting this, cross-sectional AD studies show that tau deposition patterns resemble functional brain networks. However, whether higher functional connectivity is associated with higher rates of tau accumulation is unclear. Here, we combine resting-state fMRI with longitudinal tau-PET in two independent samples including 53 (ADNI) and 41 (BioFINDER) amyloid-biomarker defined AD subjects and 28 (ADNI) vs. 16 (BioFINDER) amyloid-negative healthy controls. In both samples, AD subjects show faster tau accumulation than controls. Second, in AD, higher fMRI-assessed connectivity between 400 regions of interest (ROIs) is associated with correlated tau-PET accumulation in corresponding ROIs. Third, we show that a model including baseline connectivity and tau-PET is associated with future tau-PET accumulation. Together, connectivity is associated with tau spread in AD, supporting the view of transneuronal tau propagation.
UR - http://www.scopus.com/inward/record.url?scp=85078065413&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078065413&partnerID=8YFLogxK
U2 - 10.1038/s41467-019-14159-1
DO - 10.1038/s41467-019-14159-1
M3 - Article
C2 - 31953405
AN - SCOPUS:85078065413
SN - 2041-1723
VL - 11
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 347
ER -