TY - JOUR
T1 - Functional characterization of PAS and HES family bHLH transcription factors during the metamorphosis of the red flour beetle, Tribolium castaneum
AU - Bitra, Kavita
AU - Tan, Anjiang
AU - Dowling, Ashley
AU - Palli, Subba R.
PY - 2009/12/1
Y1 - 2009/12/1
N2 - The basic helix-loop-helix transcription factors are present in animals, plants and fungi and play important roles in the control of cellular proliferation, tissue differentiation, development and detoxification. Although insect genomes contain more than 50 helix-loop-helix transcription factors, the functions of only a few are known. RNAi has become a widely used tool to knock-down the expression to analyze the function of genes. As RNAi works well in Tribolium castaneum, we utilized this insect and RNAi to determine functions of 19 bHLH transcription factors belonging to PAS and HES families during the larval stages of the red flour beetle, T. castaneum. We searched the genome sequence of T. castaneum and identified 53 bHLH genes. Phylogenetic analyses classified these 53 genes into ten families; PAS, HES, Myc/USF, Hand, Mesp, Shout, p48, NeuroD/Neurogenin, Atonal and AS-C. In RNAi studies, knocking-down the expression of seven members of the PAS and HES families affected the growth and development of T. castaneum. An inability to grow to reach critical weight to undergo metamorphosis, failure to complete larval-pupal or pupal-adult ecdysis and abnormal wing development are among the most common phenotypes observed in RNAi insects. Among the bHLH transcription factors studied, the steroid receptor coactivator (SRC) showed the most severe phenotypes. Knock-down in the expression of the gene coding for SRC caused growth arrest by affecting the regulation of lipid metabolism. These studies demonstrate the power of RNAi for functional characterization of members of the multigene families in this model insect.
AB - The basic helix-loop-helix transcription factors are present in animals, plants and fungi and play important roles in the control of cellular proliferation, tissue differentiation, development and detoxification. Although insect genomes contain more than 50 helix-loop-helix transcription factors, the functions of only a few are known. RNAi has become a widely used tool to knock-down the expression to analyze the function of genes. As RNAi works well in Tribolium castaneum, we utilized this insect and RNAi to determine functions of 19 bHLH transcription factors belonging to PAS and HES families during the larval stages of the red flour beetle, T. castaneum. We searched the genome sequence of T. castaneum and identified 53 bHLH genes. Phylogenetic analyses classified these 53 genes into ten families; PAS, HES, Myc/USF, Hand, Mesp, Shout, p48, NeuroD/Neurogenin, Atonal and AS-C. In RNAi studies, knocking-down the expression of seven members of the PAS and HES families affected the growth and development of T. castaneum. An inability to grow to reach critical weight to undergo metamorphosis, failure to complete larval-pupal or pupal-adult ecdysis and abnormal wing development are among the most common phenotypes observed in RNAi insects. Among the bHLH transcription factors studied, the steroid receptor coactivator (SRC) showed the most severe phenotypes. Knock-down in the expression of the gene coding for SRC caused growth arrest by affecting the regulation of lipid metabolism. These studies demonstrate the power of RNAi for functional characterization of members of the multigene families in this model insect.
KW - RNA interference
KW - Red flour beetle
KW - Steroid receptor coactivator
KW - bHLH transcription factors
UR - http://www.scopus.com/inward/record.url?scp=70349785049&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349785049&partnerID=8YFLogxK
U2 - 10.1016/j.gene.2009.08.003
DO - 10.1016/j.gene.2009.08.003
M3 - Article
C2 - 19683038
AN - SCOPUS:70349785049
VL - 448
SP - 74
EP - 87
IS - 1
ER -