Genome of the tropical plant Marchantia inflexa: implications for sex chromosome evolution and dehydration tolerance

Rose A. Marks, Jeramiah J. Smith, Quentin Cronk, Christopher J. Grassa, D. Nicholas McLetchie

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

We present a draft genome assembly for the tropical liverwort, Marchantia inflexa, which adds to a growing body of genomic resources for bryophytes and provides an important perspective on the evolution and diversification of land plants. We specifically address questions related to sex chromosome evolution, sexual dimorphisms, and the genomic underpinnings of dehydration tolerance. This assembly leveraged the recently published genome of related liverwort, M. polymorpha, to improve scaffolding and annotation, aid in the identification of sex-linked sequences, and quantify patterns of sequence differentiation within Marchantia. We find that genes on sex chromosomes are under greater diversifying selection than autosomal and organellar genes. Interestingly, this is driven primarily by divergence of male-specific genes, while divergence of other sex-linked genes is similar to autosomal genes. Through analysis of sex-specific read coverage, we identify and validate genetic sex markers for M. inflexa, which will enable diagnosis of sex for non-reproductive individuals. To investigate dehydration tolerance, we capitalized on a difference between genetic lines, which allowed us to identify multiple dehydration associated genes two of which were sex-linked, suggesting that dehydration tolerance may be impacted by sex-specific genes.

Original languageEnglish
Article number8722
JournalScientific Reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Genome of the tropical plant Marchantia inflexa: implications for sex chromosome evolution and dehydration tolerance'. Together they form a unique fingerprint.

Cite this