Glucose Uptake and Metabolism in grr1/cat80 Mutants of Sacharomyces cerevisiae

Sabire Özcan, Frank Schulte, Kerstin Freidel, Andrea Weber, Michael Ciriacy

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Glucose repression in the yeast Saccharomyces cerevisiae designates a global regulatory system controlling the expression of various sets of genes required for the utilization of alternate carbon sources. In a screen, designed for the selection of mutants with reduced glycolytic flux we obtained isolates which were shown by complementation of the cloned wild‐type gene to be allelic to the glucose repression mutants grr1/cat80/cot2 previously described. We demonstrate that the grrl lesion lead to a concentration‐dependent decrease in glycolytic flux on glucose. It is very likely that this is caused by a significant decrease in the expression of various genes encoding hexose transporters (HXTI,3) leading to a reduced glucose‐uptake rate. In contrast, expression of the maltose permease gene (MAL11) and maltose utilization is normal. There is indirect evidence that grr1 affects the uptake of amino acids, and others have shown that the sugar‐induced transport of divalent cations is impaired. These effects are not glucose‐specific. We suggest that Grr1, a putative cytoplasmic protein, has a central function in the sensing of nutritional conditions for a variety of unrelated substances, and that relief from glucose repression may be a corollary of this defect in sensing.

Original languageEnglish
Pages (from-to)605-611
Number of pages7
JournalEuropean Journal of Biochemistry
Volume224
Issue number2
DOIs
StatePublished - Sep 1994

ASJC Scopus subject areas

  • Biochemistry

Fingerprint

Dive into the research topics of 'Glucose Uptake and Metabolism in grr1/cat80 Mutants of Sacharomyces cerevisiae'. Together they form a unique fingerprint.

Cite this