TY - JOUR
T1 - Hamiltonian theory of the fractional quantum Hall effect
T2 - Conserving approximation for incompressible fractions
AU - Murthy, Ganpathy
PY - 2001
Y1 - 2001
N2 - A microscopic Hamiltonian theory of the fractional quantum Hall effect developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite-tempertature properties in fractional quantum Hall states. Initially proposed as a small-(formula presented) theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all q in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-(formula presented) structure factor as (formula presented) Finally, a formalism capable of dealing with a nonuniform ground-state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.
AB - A microscopic Hamiltonian theory of the fractional quantum Hall effect developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite-tempertature properties in fractional quantum Hall states. Initially proposed as a small-(formula presented) theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all q in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-(formula presented) structure factor as (formula presented) Finally, a formalism capable of dealing with a nonuniform ground-state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.
UR - http://www.scopus.com/inward/record.url?scp=0345580402&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0345580402&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.64.195310
DO - 10.1103/PhysRevB.64.195310
M3 - Article
AN - SCOPUS:0345580402
SN - 1098-0121
VL - 64
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 19
ER -