Heparinized magnetic nanoparticles: In-vitro assessment for biomedical applications

Shy Chyi Wuang, Koon Gee Neoh, En Tang Kang, Daniel W. Pack, Deborah E. Leckband

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

Superparamagnetic magnetite nanoparticles are of great interest owing to their numerous existing and potential biomedical applications. In this study, superparamagnetic magnetite nanoparticles with average diameters of 6-8 nm have been prepared and surface-functionalized with poly(N-isopropylacrylamide) (poly(NIPAAM)) via a surface-initiated atom-transfer radical polymerization, followed by immobilization of heparin. The success of the various surface-functionalization steps has been ascertained using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The rate of internalization of the as-synthesized and surface-functionalized magnetite nanoparticles by mouse macrophage cells has been investigated. The nanoparticle internalization into the macrophages has been visualized using optical microscopy and quantified by inductively coupled plasma spectroscopy. The effectiveness of the heparinized nanoparticles in preventing thrombosis has been determined using the plasma recalcification time. The results indicate that the above-mentioned surface modifications of the magnetite nanoparticles are effective in delaying phagocytosis and preventing blood clotting in vitro. Such properties can be expected to enable their use in biomedical applications.

Original languageEnglish
Pages (from-to)1723-1730
Number of pages8
JournalAdvanced Functional Materials
Volume16
Issue number13
DOIs
StatePublished - Sep 5 2006

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Heparinized magnetic nanoparticles: In-vitro assessment for biomedical applications'. Together they form a unique fingerprint.

Cite this