Hereditarily non-pythagorean fields

David Grimm, David B. Leep

Research output: Contribution to journalArticlepeer-review

Abstract

We prove for a large class of fields F that every proper finite extension of Fpyth, the pythagorean closure of F, is not a pythagorean field. This class of fields contains number fields and fields F that are finitely generated of transcendence degree at least one over some subfield of F.

Original languageEnglish
Pages (from-to)434-452
Number of pages19
JournalJournal of Algebra
Volume574
DOIs
StatePublished - May 15 2021

Bibliographical note

Publisher Copyright:
© 2021 Elsevier Inc.

Funding

We thank Karim Becher, Eberhard Becker, and Parul Gupta for useful conversations on these topics. Financial support by CONICYT (proyecto FONDECYT 11150956 ) and by the Universidad de Santiago de Chile (USACH) (proyecto DICYT, Codigo 041933G ) are gratefully acknowledged.

FundersFunder number
Universidad de Santiago de Chile041933G
Comisión Nacional de Investigación Científica y Tecnológica
Fondo Nacional de Desarrollo Científico y Tecnológico11150956

    Keywords

    • Function field
    • Hereditarily pythagorean
    • Number field
    • Pythagorean closure
    • Pythagorean field
    • Quadratic closure
    • Quadratically closed field
    • Sums of squares
    • Valuations

    ASJC Scopus subject areas

    • Algebra and Number Theory

    Fingerprint

    Dive into the research topics of 'Hereditarily non-pythagorean fields'. Together they form a unique fingerprint.

    Cite this