High capacity silicon electrodes with nafion as binders for lithium-ion batteries

Jiagang Xu, Qinglin Zhang, Yang Tse Cheng

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

Silicon is capable of delivering a high theoretical specific capacity of 3579 mAh g-1 which is about 10 times higher than that of the state-of-the-art graphite based negative electrodes for lithium-ion batteries. However, the poor cycle life of silicon electrodes, caused by the large volumetric strain during cycling, limits the commercialization of silicon electrodes. As one of the essential components, the polymeric binder is critical to the performance and durability of lithium-ion batteries as it keeps the integrity of electrodes, maintains conductive path and must be stable in the electrolyte. In this work, we demonstrate that electrodes consisting of silicon nanoparticles mixed with commercially available Nafion and ion-exchanged Nafion can maintain a high specific capacity over 2000 mAh g-1 cycled between 1.0 V and 0.01 V. For comparison, the capacity of electrodes made of the same silicon nanoparticles mixed with a traditional binder, polyvinylidene fluoride (PVDF), fades rapidly. In addition, stable cycling at 1C rate for more than 500 cycles is achieved by limiting the lithiation capacity to 1200 mAh g-1.

Original languageEnglish
Pages (from-to)A401-A405
JournalJournal of the Electrochemical Society
Volume163
Issue number3
DOIs
StatePublished - 2016

Bibliographical note

Publisher Copyright:
© The Author(s) 2015.

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'High capacity silicon electrodes with nafion as binders for lithium-ion batteries'. Together they form a unique fingerprint.

Cite this