High-speed organic transistors fabricated using a novel hybrid-printing technique

Huai Yuan Tseng, Balaji Purushothaman, John Anthony, Vivek Subramanian

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


Printing has received attention as a technique to realize low-cost electronic systems. High performance printed transistors are desired to allow the implementation of augmented system functionality in printed systems. Unfortunately, the low resolution of conventional printing hinders printed transistors from delivering high switching speeds. In this work, we have developed and demonstrated a novel print-and-drag (PND) technique that combines inkjet printing with a dip-pen-like dragging process to create highly scaled features. Using this technique, we have demonstrated highly scaled fully printed transistors and inverters using a state-of-the-art printer. The fully printed inverters have propagation delays as low as 15 μs due to the highly-scaled device structures. The technique is compatible with multi-nozzle printing, and thus is promising for the realization of low-cost and high performance printed electronics.

Original languageEnglish
Pages (from-to)1120-1125
Number of pages6
JournalOrganic Electronics
Issue number7
StatePublished - Jul 2011

Bibliographical note

Funding Information:
We gratefully acknowledge Dimatix Fujifilm for printer-related support and the Semiconductor Research Corporation and the World Class University Program at Sunchon National University for funding support.


  • Dragging fluid
  • Inkjet printing
  • Organic transistors

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • General Chemistry
  • Condensed Matter Physics
  • Materials Chemistry
  • Electrical and Electronic Engineering


Dive into the research topics of 'High-speed organic transistors fabricated using a novel hybrid-printing technique'. Together they form a unique fingerprint.

Cite this