High-temperature optical properties of indium tin oxide thin-films

Jiwoong Kim, Sujan Shrestha, Maryam Souri, John G. Connell, Sungkyun Park, Ambrose Seo

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


Indium tin oxide (ITO) is one of the most widely used transparent conductors in optoelectronic device applications. We investigated the optical properties of ITO thin films at high temperatures up to 800 °C using spectroscopic ellipsometry. As temperature increases, amorphous ITO thin films undergo a phase transition at ~ 200 °C and develop polycrystalline phases with increased optical gap energies. The optical gap energies of both polycrystalline and epitaxial ITO thin films decrease with increasing temperature due to electron–phonon interactions. Depending on the background oxygen partial pressure, however, we observed that the optical gap energies exhibit reversible changes, implying that the oxidation and reduction processes occur vigorously due to the low oxidation and reduction potential energies of the ITO thin films at high temperatures. This result suggests that the electronic structure of ITO thin films strongly depends on temperature and oxygen partial pressure while they remain optically transparent, i.e., optical gap energies > 3.6 eV.

Original languageEnglish
Article number12486
JournalScientific Reports
Issue number1
StatePublished - Dec 1 2020

Bibliographical note

Publisher Copyright:
© 2020, The Author(s).

ASJC Scopus subject areas

  • General


Dive into the research topics of 'High-temperature optical properties of indium tin oxide thin-films'. Together they form a unique fingerprint.

Cite this