Abstract
Extraction of DNA, RNA and protein from the same sample would allow for direct comparison of genomic, transcriptomic and proteomic information. Commercially available kits exhibit poor protein yield and the TRIzol® reagent produces a protein pellet that is extremely difficult to solubilize. In response to these limitations, this study presents an optimized method for the extraction of protein from the organic phase of TRIzol that allows for higher yield recovery of skeletal muscle protein compared with direct homogenization in a common protein lysis buffer. The presented method is inexpensive, simple and fast, requires no additional treatment of the protein pellet for dissolution, and is compatible with downstream western blot applications.
Original language | English |
---|---|
Pages (from-to) | 265-270 |
Number of pages | 6 |
Journal | BioTechniques |
Volume | 69 |
Issue number | 4 |
DOIs | |
State | Published - Oct 2020 |
Bibliographical note
Funding Information:This work was made possible by grants from the NIH to J McCarthy (AR060701). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.
Publisher Copyright:
© 2020 Future Science. All rights reserved.
Keywords
- Ethanol–bromochloropropane–water method
- Guanidinium thiocyanate–phenol–chloroform extraction
- Modified TRIzol protein isolation
- Skeletal muscle
ASJC Scopus subject areas
- Biotechnology
- Biochemistry, Genetics and Molecular Biology (all)