HRV-Spark: Computing Heart Rate Variability Measures Using Apache Spark

Xufeng Qu, Yuanyuan Wu, Jinze Liu, Licong Cui

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Heart rate variability (HRV) analysis has been serving as a significant promising marker in clinical research over the last few decades. The rapidly growing heart rate data generated from various devices, particularly the electrocardiograph (ECG), need to be stored properly and processed timely. There is a pressing need to develop efficient approaches for performing HRV analyses based on ECG signals. In this paper, we introduce a cloud computing approach (called HRV-Spark) to compute HRV measures in parallel by leveraging Apache Spark and a QRS detection algorithm in [1]. We ran HRV-Spark on Amazon Web Services (AWS) clusters using large-scale datasets in the National Sleep Research Resource. We evaluated the performance and scalability of HRV-Spark in terms of the number of computing nodes in the AWS cluster, the size of the input datasets, and the hardware configuration of the computing nodes. The results show that HRV-Spark is an efficient and scalable approach for computing HRV measures.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020
EditorsTaesung Park, Young-Rae Cho, Xiaohua Tony Hu, Illhoi Yoo, Hyun Goo Woo, Jianxin Wang, Julio Facelli, Seungyoon Nam, Mingon Kang
Pages2235-2241
Number of pages7
ISBN (Electronic)9781728162157
DOIs
StatePublished - Dec 16 2020
Event2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020 - Virtual, Seoul, Korea, Republic of
Duration: Dec 16 2020Dec 19 2020

Publication series

NameProceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020

Conference

Conference2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020
Country/TerritoryKorea, Republic of
CityVirtual, Seoul
Period12/16/2012/19/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Keywords

  • Amazon Web Services
  • Apache Spark
  • Cloud Computing
  • Heart Rate Variability

ASJC Scopus subject areas

  • Computer Science Applications
  • Information Systems and Management
  • Medicine (miscellaneous)
  • Health Informatics

Fingerprint

Dive into the research topics of 'HRV-Spark: Computing Heart Rate Variability Measures Using Apache Spark'. Together they form a unique fingerprint.

Cite this