TY - JOUR
T1 - Hybrid polymer/porous silicon nanofibers for loading and sustained release of synthetic DNA-based responsive devices
AU - Zuidema, Jonathan M.
AU - Bertucci, Alessandro
AU - Kang, Jinyoung
AU - Sailor, Michael J.
AU - Ricci, Francesco
N1 - Publisher Copyright:
© 2020 The Royal Society of Chemistry.
PY - 2020/1/28
Y1 - 2020/1/28
N2 - Synthetic DNA-based oligonucleotides are loaded into porous silicon nanoparticles (pSiNPs) and incorporated into nanofibers of poly(lactide-co-glycolide) (PLGA), poly-l-lactic acid (PLA), or polycaprolactone (PCL). The resulting hybrid nanofibers are characterized for their ability to release the functional oligonucleotide payload under physiologic conditions. Under temperature and pH conditions mimicking physiological values, the PLGA-based nanofibers release >80% of their DNA cargo within 5 days, whereas the PLA and PCL-based fibers require 15 days to release >80% of their cargo. The quantity of DNA released scales with the quantity of DNA-loaded pSiNPs embedded in the nanofibers; mass loadings of between 2.4 and 9.1% (based on mass of DNA-pSiNP construct relative to mass of polymer composite) are investigated. When a responsive DNA-based nanodevice (i.e. molecular beacon) is used as a payload, it retains its functionality during the release period, independent of the polymer used for the formation of the nanofibers.
AB - Synthetic DNA-based oligonucleotides are loaded into porous silicon nanoparticles (pSiNPs) and incorporated into nanofibers of poly(lactide-co-glycolide) (PLGA), poly-l-lactic acid (PLA), or polycaprolactone (PCL). The resulting hybrid nanofibers are characterized for their ability to release the functional oligonucleotide payload under physiologic conditions. Under temperature and pH conditions mimicking physiological values, the PLGA-based nanofibers release >80% of their DNA cargo within 5 days, whereas the PLA and PCL-based fibers require 15 days to release >80% of their cargo. The quantity of DNA released scales with the quantity of DNA-loaded pSiNPs embedded in the nanofibers; mass loadings of between 2.4 and 9.1% (based on mass of DNA-pSiNP construct relative to mass of polymer composite) are investigated. When a responsive DNA-based nanodevice (i.e. molecular beacon) is used as a payload, it retains its functionality during the release period, independent of the polymer used for the formation of the nanofibers.
UR - http://www.scopus.com/inward/record.url?scp=85078691702&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078691702&partnerID=8YFLogxK
U2 - 10.1039/c9nr08474f
DO - 10.1039/c9nr08474f
M3 - Article
C2 - 31930266
AN - SCOPUS:85078691702
SN - 2040-3364
VL - 12
SP - 2333
EP - 2339
JO - Nanoscale
JF - Nanoscale
IS - 4
ER -