Abstract
Introduction: A major consequence of ICU-acquired weakness (ICUAW) is diaphragm weakness, which prolongs the duration of mechanical ventilation. Hyperglycemia (HG) is a risk factor for ICUAW. However, the mechanisms underlying HG-induced respiratory muscle weakness are not known. Excessive reactive oxygen species (ROS) injure multiple tissues during HG, but only one study suggests that excessive ROS generation may be linked to HG-induced diaphragm weakness. We hypothesized that HG-induced diaphragm dysfunction is mediated by excessive superoxide generation and that administration of a specific superoxide scavenger, polyethylene glycol superoxide dismutase (PEG-SOD), would ameliorate these effects.Methods: HG was induced in rats using streptozotocin (60 mg/kg intravenously) and the following groups assessed at two weeks: controls, HG, HG + PEG-SOD (2,000U/kg/d intraperitoneally for seven days), and HG + denatured (dn)PEG-SOD (2000U/kg/d intraperitoneally for seven days). PEG-SOD and dnPEG-SOD were administered on day 8, we measured diaphragm specific force generation in muscle strips, force-pCa relationships in single permeabilized fibers, contractile protein content and indices of oxidative stress.Results: HG reduced diaphragm specific force generation, altered single fiber force-pCa relationships, depleted troponin T, and increased oxidative stress. PEG-SOD prevented HG-induced reductions in diaphragm specific force generation (for example 80 Hz force was 26.4 ± 0.9, 15.4 ± 0.9, 24.0 ± 1.5 and 14.9 ± 0.9 N/cm2 for control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). PEG-SOD also restored HG-induced reductions in diaphragm single fiber force generation (for example, Fmax was 182.9 ± 1.8, 85.7 ± 2.0, 148.6 ± 2.4 and 90.9 ± 1.5 kPa in control, HG, HG + PEG-SOD, and HG + dnPEG-SOD groups, respectively, P <0.001). HG-induced troponin T depletion, protein nitrotyrosine formation, and carbonyl modifications were largely prevented by PEG-SOD.Conclusions: HG-induced reductions in diaphragm force generation occur largely at the level of the contractile proteins, are associated with depletion of troponin T and increased indices of oxidative stress, findings not previously reported. Importantly, administration of PEG-SOD largely ablated these derangements, indicating that superoxide generation plays a major role in hyperglycemia-induced diaphragm dysfunction. This new mechanistic information could explain how HG alters diaphragm function during critical illness.
Original language | English |
---|---|
Article number | R88 |
Journal | Critical Care |
Volume | 18 |
Issue number | 3 |
DOIs | |
State | Published - May 3 2014 |
Bibliographical note
Funding Information:This work was supported by funds provided by the National Institutes of Health from grants awarded to LAC (R01HL112085, R01HL080609) and to GSS (R01HL113494, R01HL080429, R01HL081525). In addition, the authors would like to thank Drs. Wenyi Wang and Shanshan Zhan for their technical assistance in carrying out some of the studies.
Funding
This work was supported by funds provided by the National Institutes of Health from grants awarded to LAC (R01HL112085, R01HL080609) and to GSS (R01HL113494, R01HL080429, R01HL081525). In addition, the authors would like to thank Drs. Wenyi Wang and Shanshan Zhan for their technical assistance in carrying out some of the studies.
Funders | Funder number |
---|---|
National Institutes of Health (NIH) | |
National Institutes of Health (NIH) | R01HL081525, R01HL113494, R01HL112085, R01HL080429, R01HL080609 |
U.S. Department of Veterans Affairs | I01BX002132 |
ASJC Scopus subject areas
- Critical Care and Intensive Care Medicine