I am hiQ—a novel pair of accuracy indices for imputed genotypes

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: Imputation of untyped markers is a standard tool in genome-wide association studies to close the gap between directly genotyped and other known DNA variants. However, high accuracy with which genotypes are imputed is fundamental. Several accuracy measures have been proposed and some are implemented in imputation software, unfortunately diversely across platforms. In the present paper, we introduce Iam hiQ, an independent pair of accuracy measures that can be applied to dosage files, the output of all imputation software. Iam (imputation accuracy measure) quantifies the average amount of individual-specific versus population-specific genotype information in a linear manner. hiQ (heterogeneity in quantities of dosages) addresses the inter-individual heterogeneity between dosages of a marker across the sample at hand. Results: Applying both measures to a large case–control sample of the International Lung Cancer Consortium (ILCCO), comprising 27,065 individuals, we found meaningful thresholds for Iam and hiQ suitable to classify markers of poor accuracy. We demonstrate how Manhattan-like plots and moving averages of Iam and hiQ can be useful to identify regions enriched with less accurate imputed markers, whereas these regions would by missed when applying the accuracy measure info (implemented in IMPUTE2). Conclusion: We recommend using Iam hiQ additional to other accuracy scores for variant filtering before stepping into the analysis of imputed GWAS data.

Original languageEnglish
Article number50
JournalBMC Bioinformatics
Volume23
Issue number1
DOIs
StatePublished - Dec 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

Funding

Open Access funding enabled and organized by Projekt DEAL. The National Institutes of Health (7U19CA203654-02/ 397 114564-5111078 Integrative Analysis of Lung Cancer Etiology and Risk) supported this work. CARET is funded by the National Cancer Institute, National Institutes of Health through grants U01 CA063673, UM1 CA167462, R01 CA 111703, RO1 CA 151989, U01 CA167462 and funds from the Fred Hutchinson Cancer Research Center. Other individual funding for participating studies and members of INTEGRAL-ILCCO are listed elsewhere [, ]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We acknowledge support by the Open Access Publication Funds of the G?ttingen University. We acknowledge support by the Open Access Publication Funds of the Göttingen University.

FundersFunder number
G?ttingen University
National Institutes of Health (NIH)R01 CA 111703, UM1 CA167462, RO1 CA 151989, U01 CA063673
National Institutes of Health (NIH)
National Childhood Cancer Registry – National Cancer InstituteR35CA197449
National Childhood Cancer Registry – National Cancer Institute
Georg-August-Universität Göttingen

    Keywords

    • Accuracy measures
    • GWAS
    • Genotype imputation
    • High-throughput genotyping

    ASJC Scopus subject areas

    • Structural Biology
    • Biochemistry
    • Molecular Biology
    • Computer Science Applications
    • Applied Mathematics

    Fingerprint

    Dive into the research topics of 'I am hiQ—a novel pair of accuracy indices for imputed genotypes'. Together they form a unique fingerprint.

    Cite this