TY - JOUR
T1 - Identification of Histone and N-Terminal Acetyltransferases Required for Reproduction and Embryonic Development of Yellow Fever Mosquito, Aedes aegypti
AU - Balasubramani, Sundararajan
AU - Palli, Subba Reddy
N1 - Publisher Copyright:
© 2025 Wiley Periodicals LLC.
PY - 2025/8
Y1 - 2025/8
N2 - Histone acetylation levels maintained by histone acetyltransferases (HATs) and histone deacetylases play important roles in maintaining local chromatin accessibility and expression of genes that regulate many biological processes, including development and reproduction. N-terminal acetylation of proteins catalyzed by N-terminal acetyltransferases (NATs) also regulates gene expression. We identified 25 HATs/NATs genes in the yellow fever mosquito, Aedes aegypti, and investigated their function in female reproduction using RNA interference (RNAi). Among the HATs/NATs studied, the knockdown of AANAT1 (Arylamine N-acetyltransferase), NAA40 (N-alpha-acetyltransferase 40), NAA80 (N-alpha-acetyltransferase 80), KAT7 (Histone lysine acetyltransferase 7), ACNAT (Acyl-CoA N-acyltransferase), and MCM3AP (Minichromosome maintenance complex component 3 associated protein) significantly reduced egg laying and caused severe problems in oocyte development compared to that in control insects injected with dsGFP. Gene expression analysis using RT-qPCR revealed that vitellogenin and its receptor genes are downregulated in mosquitoes injected with dsAANAT1, dsNAA40, dsNAA80, dsKAT7, dsACNAT, and dsMCM3AP compared to that in control animals. Also, the knockdown of HATs/NATs genes ATAT1 (Alpha-tubulin N-acetyltransferase 1), AANAT1, TAFIID (Transcription initiation factor TFIID subunit 1), HATB (Histone acetyltransferase type B) and NAT9 (N-acetyltransferase 9) decreased more than 50% egg hatch by blocking embryonic development. These results suggest that the acetylation of proteins, especially histones mediated by NATs and HATs, plays an important role in regulating female reproduction and embryonic development of Ae. aegypti.
AB - Histone acetylation levels maintained by histone acetyltransferases (HATs) and histone deacetylases play important roles in maintaining local chromatin accessibility and expression of genes that regulate many biological processes, including development and reproduction. N-terminal acetylation of proteins catalyzed by N-terminal acetyltransferases (NATs) also regulates gene expression. We identified 25 HATs/NATs genes in the yellow fever mosquito, Aedes aegypti, and investigated their function in female reproduction using RNA interference (RNAi). Among the HATs/NATs studied, the knockdown of AANAT1 (Arylamine N-acetyltransferase), NAA40 (N-alpha-acetyltransferase 40), NAA80 (N-alpha-acetyltransferase 80), KAT7 (Histone lysine acetyltransferase 7), ACNAT (Acyl-CoA N-acyltransferase), and MCM3AP (Minichromosome maintenance complex component 3 associated protein) significantly reduced egg laying and caused severe problems in oocyte development compared to that in control insects injected with dsGFP. Gene expression analysis using RT-qPCR revealed that vitellogenin and its receptor genes are downregulated in mosquitoes injected with dsAANAT1, dsNAA40, dsNAA80, dsKAT7, dsACNAT, and dsMCM3AP compared to that in control animals. Also, the knockdown of HATs/NATs genes ATAT1 (Alpha-tubulin N-acetyltransferase 1), AANAT1, TAFIID (Transcription initiation factor TFIID subunit 1), HATB (Histone acetyltransferase type B) and NAT9 (N-acetyltransferase 9) decreased more than 50% egg hatch by blocking embryonic development. These results suggest that the acetylation of proteins, especially histones mediated by NATs and HATs, plays an important role in regulating female reproduction and embryonic development of Ae. aegypti.
KW - gene expression
KW - HAT
KW - histone
KW - mosquito
KW - NAT
UR - http://www.scopus.com/inward/record.url?scp=105003227912&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105003227912&partnerID=8YFLogxK
U2 - 10.1002/arch.70055
DO - 10.1002/arch.70055
M3 - Article
C2 - 40235318
AN - SCOPUS:105003227912
SN - 0739-4462
VL - 118
JO - Archives of Insect Biochemistry and Physiology
JF - Archives of Insect Biochemistry and Physiology
IS - 4
M1 - e70055
ER -