TY - JOUR
T1 - Identification of milling and baking quality QTL in multiple soft wheat mapping populations
AU - Cabrera, Antonio
AU - Guttieri, Mary
AU - Smith, Nathan
AU - Souza, Edward
AU - Sturbaum, Anne
AU - Hua, Duc
AU - Griffey, Carl
AU - Barnett, Marla
AU - Murphy, Paul
AU - Ohm, Herb
AU - Uphaus, Jim
AU - Sorrells, Mark
AU - Heffner, Elliot
AU - Brown-Guedira, Gina
AU - Van Sanford, David
AU - Sneller, Clay
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2015/7/19
Y1 - 2015/7/19
N2 - Key message: Two mapping approaches were use to identify and validate milling and baking quality QTL in soft wheat. Two LG were consistently found important for multiple traits and we recommend the use marker-assisted selection on specific markers reported here. Abstract: Wheat-derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wheat including flour yield, softness equivalent, flour protein, sucrose, sodium carbonate, water absorption and lactic acid, solvent retention capacities in a diversity panel and five bi-parental mapping populations. The populations were genotyped with SSR and DArT markers, with markers specific for the 1BL.1RS translocation and sucrose synthase gene. Association analysis and composite interval mapping were performed to identify quantitative trait loci (QTL). High heritability was observed for each of the traits evaluated, trait correlations were consistent over populations, and transgressive segregants were common in all bi-parental populations. A total of 26 regions were identified as potential QTL in the diversity panel and 74 QTL were identified across all five bi-parental mapping populations. Collinearity of QTL from chromosomes 1B and 2B was observed across mapping populations and was consistent with results from the association analysis in the diversity panel. Multiple regression analysis showed the importance of the two 1B and 2B regions and marker-assisted selection for the favorable alleles at these regions should improve quality.
AB - Key message: Two mapping approaches were use to identify and validate milling and baking quality QTL in soft wheat. Two LG were consistently found important for multiple traits and we recommend the use marker-assisted selection on specific markers reported here. Abstract: Wheat-derived food products require a range of characteristics. Identification and understanding of the genetic components controlling end-use quality of wheat is important for crop improvement. We assessed the underlying genetics controlling specific milling and baking quality parameters of soft wheat including flour yield, softness equivalent, flour protein, sucrose, sodium carbonate, water absorption and lactic acid, solvent retention capacities in a diversity panel and five bi-parental mapping populations. The populations were genotyped with SSR and DArT markers, with markers specific for the 1BL.1RS translocation and sucrose synthase gene. Association analysis and composite interval mapping were performed to identify quantitative trait loci (QTL). High heritability was observed for each of the traits evaluated, trait correlations were consistent over populations, and transgressive segregants were common in all bi-parental populations. A total of 26 regions were identified as potential QTL in the diversity panel and 74 QTL were identified across all five bi-parental mapping populations. Collinearity of QTL from chromosomes 1B and 2B was observed across mapping populations and was consistent with results from the association analysis in the diversity panel. Multiple regression analysis showed the importance of the two 1B and 2B regions and marker-assisted selection for the favorable alleles at these regions should improve quality.
UR - http://www.scopus.com/inward/record.url?scp=84945487929&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84945487929&partnerID=8YFLogxK
U2 - 10.1007/s00122-015-2580-3
DO - 10.1007/s00122-015-2580-3
M3 - Article
C2 - 26188588
AN - SCOPUS:84945487929
SN - 0040-5752
VL - 128
SP - 2227
EP - 2242
JO - Theoretical And Applied Genetics
JF - Theoretical And Applied Genetics
IS - 11
ER -