Identifying facets of reader-generated online reviews of children’s books based on a textual analysis approach

Yunseon Choi, Soohyung Joo

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

With the increasing popularity of social media, online reviews have become one of the primary information sources for book selection. Prior studies have analyzed online reviews, mostly in the domain of business. However, little research has examined the content of online book reviews of children’s books. Book reviews generated by book readers contain different aspects of information, such as opinions, feedback, or emotional responses, from the perspectives of readers. This study explores what aspects of the books are addressed in readers’ reviews, and then it intends to identify categorical features or facets of online book reviews of children’s books. We employed a textual analysis approach including the latent Dirichlet allocation topic modeling to analyze the content of book reviews. The results indicate that online book reviews exhibit different facets of the books, which can be used as access points by potential readers to help them select relevant books.

Original languageEnglish
Pages (from-to)349-363
Number of pages15
JournalLibrary Quarterly
Volume90
Issue number3
DOIs
StatePublished - Jul 1 2020

Bibliographical note

Publisher Copyright:
© 2020 by The University of Chicago. All rights reserved.

ASJC Scopus subject areas

  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Identifying facets of reader-generated online reviews of children’s books based on a textual analysis approach'. Together they form a unique fingerprint.

Cite this