Abstract
Background: Robotic Exoskeletons (EKSO) are novel technology for retraining common gait dysfunction in people post-stroke. EKSO’s capability to influence gait characteristics post-stroke is unknown. Objectives: To compare temporospatial, kinematic, and muscle activity gait characteristics before and after a single EKSO session and examine kinematic symmetry between involved and uninvolved limbs. Methods: Participants post-stroke walked under two conditions: pre-EKSO, and immediately post-EKSO. A 10-camera motion capture system synchronized with 6 force plates was used to obtain temporospatial and kinematic gait characteristics from 5 walking trials of 9 meters at a self-selected speed. Surface EMG activity was obtained from bilateral gluteus medius, rectus femoris, medial hamstrings, tibialis anterior, and soleus muscles. Wilcoxon Signed Rank tests were used to analyze differences pre- and post-EKSO. Single EKSO session consisted of 22.3±6.8 minutes total time (walk time=7.2±1.5 minutes) with 250±40 steps. Results: Six ambulatory (Functional Ambulation Category, range=4-5) adults (3 female; 44.7±14.6 years) with chronic stroke (4.5±1.9 years post-stroke) participated. No significant differences were observed for temporospatial gait characteristics. Muscle activity was significantly less post-EKSO in the involved leg rectus femoris during swing phase (p=0.028). Ankle dorsiflexion range of motion on the involved leg post-EKSO was significantly less during stance phase (p=0.046). Differences between involved and uninvolved joint range of motion symmetry were found pre-EKSO but not post-EKSO in swing phase hip flexion and stance phase knee flexion and knee extension. Conclusions: EKSO training appears capable of altering gait in people with chronic stroke and a viable intervention to reduce gait dysfunction post-stroke.
Original language | English |
---|---|
Pages (from-to) | 503-515 |
Number of pages | 13 |
Journal | Topics in Stroke Rehabilitation |
Volume | 27 |
Issue number | 7 |
DOIs | |
State | Published - Oct 2 2020 |
Bibliographical note
Publisher Copyright:© 2020 Taylor & Francis Group, LLC.
Keywords
- Cerebrovascular disease
- biomechanics
- electromyography
- gait
- mobility
- robotics
- temporospatial
ASJC Scopus subject areas
- Rehabilitation
- Community and Home Care
- Clinical Neurology