Immobilized palladium-catalyzed electro-Fenton's degradation of chlorobenzene in groundwater

Roya Nazari, Ljiljana Rajić, Ali Ciblak, Sebastián Hernández, Ibrahim E. Mousa, Wei Zhou, Dibakar Bhattacharyya, Akram N. Alshawabkeh

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

This study investigates the effect of palladium (Pd) form on the electrochemical degradation of chlorobenzene in groundwater by palladium-catalyzed electro-Fenton (EF) reaction. In batch and flow-through column reactors, EF was initiated via in-situ electrochemical formation of hydrogen peroxide (H2O2) supported by Pd on alumina powder or by palladized polyacrylic acid (PAA) in a polyvinylidene fluoride (PVDF) membrane (Pd-PVDF/PAA). In a mixed batch reactor containing 10 mg L−1 Fe2+, 2 g L−1 of catalyst in powder form (1% Pd, 20 mg L−1 of Pd) and an initial pH of 3, chlorobenzene was degraded under 120 mA current following a first-order decay rate showing 96% removal within 60 min. Under the same conditions, a rotating Pd-PVDF/PAA disk produced 88% of chlorobenzene degradation. In the column experiment with automatic pH adjustment, 71% of chlorobenzene was removed within 120 min with 10 mg L−1 Fe2+, and 2 g L−1 catalyst in pellet form (0.5% Pd, 10 mg L−1 of Pd) under 60 mA. The EF reaction can be achieved under flow, without external pH adjustment and H2O2 addition, and can be applied for in-situ groundwater treatment. Furthermore, the rotating PVDF-PAA membrane with immobilized Pd-catalyst showed an effective and low maintenance option for employing Pd catalyst for water treatment.

Original languageEnglish
Pages (from-to)556-563
Number of pages8
JournalChemosphere
Volume216
DOIs
StatePublished - Feb 2019

Bibliographical note

Publisher Copyright:
© 2018 Elsevier Ltd

Keywords

  • Chlorobenzene
  • Electro-Fenton's reaction
  • Groundwater remediation
  • Pd catalyst
  • Three-electrode flow system

ASJC Scopus subject areas

  • General Chemistry
  • Public Health, Environmental and Occupational Health
  • Pollution
  • Health, Toxicology and Mutagenesis
  • Environmental Engineering
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'Immobilized palladium-catalyzed electro-Fenton's degradation of chlorobenzene in groundwater'. Together they form a unique fingerprint.

Cite this