Abstract
In the past decades, various lossy compressors have been studied broadly due to the ever-increasing volume of data being produced by today's scientific applications. SZ has been one of the best error-bounded lossy compressors ever raised, and it has a flexible framework that includes four adjustable steps: prediction, quantization, variable-length encoding, and lossless compression. In this paper, we improve the lossy compression performances of the SZ compression model by exploring different existing lossless compression techniques using the Squash data compression benchmark. Specifically, we first characterize the bytes outputted by the first three steps in SZ, then we investigate the best lossless compressor with different datasets and different error bounds. We perform our exploration by testing 8 widely used lossless compressors under different configurations together with SZ over five well-known scientific simulation datasets. Our experiments show that adopting the best-fit lossless compressor selected based on our analysis can improve the overall compression speed by up to 40% compared to the previous lossless compression technique used in SZ with the comparable quality of reconstructed data.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021 |
Editors | Yixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez |
Pages | 2986-2991 |
Number of pages | 6 |
ISBN (Electronic) | 9781665439022 |
DOIs | |
State | Published - 2021 |
Event | 2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, United States Duration: Dec 15 2021 → Dec 18 2021 |
Publication series
Name | Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021 |
---|
Conference
Conference | 2021 IEEE International Conference on Big Data, Big Data 2021 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 12/15/21 → 12/18/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE.
ASJC Scopus subject areas
- Information Systems and Management
- Artificial Intelligence
- Computer Vision and Pattern Recognition
- Information Systems