Abstract
Many clustering algorithms for mesh, ad hoc and Wireless Sensor Networks have been proposed. Probabilistic approaches are a popular class of such algorithms. However, it is essential to analyze their robustness against security compromise. We study the robustness of EEHCA, a popular energy efficient clustering algorithm as an example of probabilistic class in terms of security compromise. In this paper, we investigate attacks on EEHCA through analysis and experimental simulations. We analytically characterize two different attack models. In the first attack model, the attacker aims to gain control over the network by stealing network traffic, or by disrupting the data aggregation process (integrity attack). In the second attack model, the inducement of the attacker is to abridge the network lifetime (denial of service attack). We assume the clustering algorithm is running periodically and propose a detection solution by exploiting Bernoulli CUSUM charts.
Original language | English |
---|---|
Title of host publication | Security and Privacy in Communication Networks - 16th EAI International Conference, SecureComm 2020, Proceedings |
Editors | Noseong Park, Kun Sun, Sara Foresti, Kevin Butler, Nitesh Saxena |
Pages | 381-401 |
Number of pages | 21 |
DOIs | |
State | Published - 2020 |
Event | 16th International Conference on Security and Privacy in Communication Networks, SecureComm 2020 - Washington, United States Duration: Oct 21 2020 → Oct 23 2020 |
Publication series
Name | Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST |
---|---|
Volume | 335 |
ISSN (Print) | 1867-8211 |
Conference
Conference | 16th International Conference on Security and Privacy in Communication Networks, SecureComm 2020 |
---|---|
Country/Territory | United States |
City | Washington |
Period | 10/21/20 → 10/23/20 |
Bibliographical note
Publisher Copyright:© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020.
Funding
Acknowledgments. Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.
Funders | Funder number |
---|---|
Army Research Laboratory | W911NF-13-2-0045 |
Keywords
- Anomaly detection
- CUSUM test
- Probabilistic clustering algorithm
ASJC Scopus subject areas
- Computer Networks and Communications