Improving the Accuracy-Latency Trade-off of Edge-Cloud Computation Offloading for Deep Learning Services

Xiaobo Zhao, Minoo Hosseinzadeh, Nathaniel Hudson, Hana Khamfroush, Daniel E. Lucani

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Offloading tasks to the edge or the Cloud has the potential to improve accuracy of classification and detection tasks as more powerful hardware and machine learning models can be used. The downside is the added delay introduced for sending the data to the Edge/Cloud. In delay-sensitive applications, it is usually necessary to strike a balance between accuracy and latency. However, the state of the art typically considers offloading all-or-nothing decisions, e.g., process locally or send all available data to the Edge (Cloud). Our goal is to expand the options in the accuracy-latency trade-off by allowing the source to send a fraction of the total data for processing. We evaluate the performance of image classifiers when faced with images that have been purposely reduced in quality in order to reduce traffic costs. Using three common models (SqueezeNet, GoogleNet, ResNet) and two data sets (Caltech101, ImageNet) we show that the Gompertz function provides a good approximation to determine the accuracy of a model given the fraction of the data of the image that is actually conveyed to the model. We formulate the offloading decision process using this new flexibility and show that a better overall accuracy-latency tradeoff is attained: 58% traffic reduction, 25% latency reduction, as well as 12% accuracy improvement.

Original languageEnglish
Title of host publication2020 IEEE Globecom Workshops, GC Wkshps 2020 - Proceedings
ISBN (Electronic)9781728173078
DOIs
StatePublished - Dec 2020
Event2020 IEEE Globecom Workshops, GC Wkshps 2020 - Virtual, Taipei, Taiwan, Province of China
Duration: Dec 7 2020Dec 11 2020

Publication series

Name2020 IEEE Globecom Workshops, GC Wkshps 2020 - Proceedings

Conference

Conference2020 IEEE Globecom Workshops, GC Wkshps 2020
Country/TerritoryTaiwan, Province of China
CityVirtual, Taipei
Period12/7/2012/11/20

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture
  • Software

Fingerprint

Dive into the research topics of 'Improving the Accuracy-Latency Trade-off of Edge-Cloud Computation Offloading for Deep Learning Services'. Together they form a unique fingerprint.

Cite this