In-situ optical measurements of water vapor concentration and temperature in a proton exchange membrane fuel cell at steady state and under dynamic cycling

Ritobrata Sur, Thomas J. Boucher, Michael W. Renfro, Baki M. Cetegen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

A robust, accurate and fast in-situ sensor was developed for detection of water vapor partial pressure and temperature simultaneously at the anode and cathode channels of a PEM fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) utilizing wavelength modulation (WMS) was employed for these measurements. This method determines the ratio of the second and first harmonics (2f/1f) of the spectroscopic absorption profile of water vapor by the aid of a software lock-in amplifier. Measurements were taken using a diode laser emitting around a wavelength of 1471 nm where the water vapor absorption exhibits significant sensitivity to partial pressure and temperature. Measurements of water vapor concentration and temperature in were taken at steady and dynamic operating conditions in the anode and cathode gas channels near the inlet and outlet ports of a serpentine channel PEM fuel cell with Nafion membrane of active area 50 cm2. Different load and inlet humidity conditions were tested to characterize the operation at different conditions. The partial pressure of water vapor increases towards the exit of both the gas channels, but the increase is found to be more significant on the cathode side. The dynamic operation of the fuel cell was also examined in this study as well as the simultaneous measurements at the anode and cathode gas channels.

Original languageEnglish
Title of host publicationProceedings of the 7th International Conference on Fuel Cell Science, Engineering, and Technology 2009
Pages65-72
Number of pages8
DOIs
StatePublished - 2009
Event7th International Conference on Fuel Cell Science, Engineering, and Technology 2009 - Newport Beach, CA, United States
Duration: Jun 8 2009Jun 10 2009

Publication series

NameProceedings of the 7th International Conference on Fuel Cell Science, Engineering, and Technology 2009

Conference

Conference7th International Conference on Fuel Cell Science, Engineering, and Technology 2009
Country/TerritoryUnited States
CityNewport Beach, CA
Period6/8/096/10/09

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Fuel Technology

Fingerprint

Dive into the research topics of 'In-situ optical measurements of water vapor concentration and temperature in a proton exchange membrane fuel cell at steady state and under dynamic cycling'. Together they form a unique fingerprint.

Cite this