TY - JOUR
T1 - In vivo identification of eugenol-responsive and muscone- responsive mouse odorant receptors
AU - McClintock, Timothy S.
AU - Adipietro, Kaylin
AU - Titlow, William B.
AU - Breheny, Patrick
AU - Walz, Andreas
AU - Mombaerts, Peter
AU - Matsunami, Hiroaki
N1 - Publisher Copyright:
© 2014 the authors.
PY - 2014/11/19
Y1 - 2014/11/19
N2 - Our understanding of mammalian olfactory coding has been impeded by the paucity of information about the odorant receptors (ORs) that respond to a given odorant ligand in awake, freely behaving animals. Identifying the ORs that respond in vivo to a given odorant ligand from among the ∼1100 ORs in mice is intrinsically challenging but critical for our understanding of olfactory coding at the periphery. Here, we report an in vivo assay that is based on a novel gene-targeted mouse strain, S100a5–tauGFP, in which a fluorescent reporter selectively marks olfactory sensory neurons that have been activated recently in vivo. Because each olfactory sensory neuron expresses a single OR gene, multiple ORs responding to a given odorant ligand can be identified simultaneously by capturing the population of activated olfactory sensory neurons and using expression profiling methods to screen the repertoire of mouse OR genes. We used this in vivo assay to re-identify known eugenol- and muscone-responsive mouse ORs. We identified additional ORs responsive to eugenol or muscone. Heterologous expression assays confirmed nine eugenol-responsive ORs (Olfr73, Olfr178, Olfr432, Olfr610, Olfr958, Olfr960, Olfr961, Olfr913, and Olfr1234) and four muscone-responsive ORs (Olfr74, Olfr235, Olfr816, and Olfr1440). We found that the human ortholog of Olfr235 and Olfr1440 responds to macrocyclic ketone and lactone musk odorants but not to polycyclic musk odorants or a macrocyclic diester musk odorant. This novel assay, called the Kentucky in vivo odorant ligand–receptor assay, should facilitate the in vivo identification of mouse ORs for a given odorant ligand of interest.
AB - Our understanding of mammalian olfactory coding has been impeded by the paucity of information about the odorant receptors (ORs) that respond to a given odorant ligand in awake, freely behaving animals. Identifying the ORs that respond in vivo to a given odorant ligand from among the ∼1100 ORs in mice is intrinsically challenging but critical for our understanding of olfactory coding at the periphery. Here, we report an in vivo assay that is based on a novel gene-targeted mouse strain, S100a5–tauGFP, in which a fluorescent reporter selectively marks olfactory sensory neurons that have been activated recently in vivo. Because each olfactory sensory neuron expresses a single OR gene, multiple ORs responding to a given odorant ligand can be identified simultaneously by capturing the population of activated olfactory sensory neurons and using expression profiling methods to screen the repertoire of mouse OR genes. We used this in vivo assay to re-identify known eugenol- and muscone-responsive mouse ORs. We identified additional ORs responsive to eugenol or muscone. Heterologous expression assays confirmed nine eugenol-responsive ORs (Olfr73, Olfr178, Olfr432, Olfr610, Olfr958, Olfr960, Olfr961, Olfr913, and Olfr1234) and four muscone-responsive ORs (Olfr74, Olfr235, Olfr816, and Olfr1440). We found that the human ortholog of Olfr235 and Olfr1440 responds to macrocyclic ketone and lactone musk odorants but not to polycyclic musk odorants or a macrocyclic diester musk odorant. This novel assay, called the Kentucky in vivo odorant ligand–receptor assay, should facilitate the in vivo identification of mouse ORs for a given odorant ligand of interest.
KW - Cell sorting
KW - Expression profiling
KW - G-protein coupled receptor
KW - Odor detection
KW - Olfaction
KW - Sensory coding
UR - http://www.scopus.com/inward/record.url?scp=84911369871&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84911369871&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.3625-14.2014
DO - 10.1523/JNEUROSCI.3625-14.2014
M3 - Article
C2 - 25411495
AN - SCOPUS:84911369871
SN - 0270-6474
VL - 34
SP - 15669
EP - 15678
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 47
ER -