Increasing confidence of protein interactomes using network topological metrics

Jin Chen, Wynne Hsu, Mong Li Lee, See Kiong Ng

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Motivation: Experimental limitations in high-throughput protein-protein interaction detection methods have resulted in low quality interaction datasets that contained sizable fractions of false positives and false negatives. Small-scale, focused experiments are then needed to complement the high-throughput methods to extract true protein interactions. However, the naturally vast interactomes would require much more scalable approaches. Results: We describe a novel method called IRAP* as a computational complement for repurification of the highly erroneous experimentally derived protein interactomes. Our method involves an iterative process of removing interactions that are confidently identified as false positives and adding interactions detected as false negatives into the interactomes. Identification of both false positives and false negatives are performed in IRAP* using interaction confidence measures based on network topological metrics. Potential false positives are identified amongst the detected interactions as those with very low computed confidence values, while potential false negatives are discovered as the undetected interactions with high computed confidence values. Our results from applying IRAP* on large-scale interaction datasets generated by the popular yeast-two-hybrid assays for yeast, fruit fly and worm showed that the computationally repurified interaction datasets contained potentially lower fractions of false positive and false negative errors based on functional homogeneity.

Original languageEnglish
Pages (from-to)1998-2004
Number of pages7
JournalBioinformatics
Volume22
Issue number16
DOIs
StatePublished - Aug 15 2006

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Increasing confidence of protein interactomes using network topological metrics'. Together they form a unique fingerprint.

Cite this