Infant rat model of the shaken baby syndrome: Preliminary characterization and evidence for the role of free radicals in cortical hemorrhaging and progressive neuronal degeneration

Sarah L. Smith, Paula K. Andrus, David D. Gleason, Edward D. Hall

Research output: Contribution to journalArticlepeer-review

66 Scopus citations

Abstract

Infants subjected to repeated episodes of violent shaking develop brain damage characterized by intracranial hemorrhage and progressive cortical atrophy. We have developed an animal model that mimics this pathological state and investigated its etiology and treatment. Anesthetized male rats, 6 days of age, were subjected to one episode of shaking per day for 3 consecutive days. Separate groups of rats were sacrificed 1 h postinjury on the third day of shaking for HPLC quantification of cortical ·OH and vitamin E levels, and histological assessment of cortical hemorrhaging. Additional groups were sacrificed 7 or 14 days postinjury to demonstrate progressive neuronal degeneration via cortical wet weight comparisons. In comparison to noninjured shams, the results indicated that cortical vitamin E and ·OH levels rose 53.7% (p < 0.005) and 457.1% (p < 0.001), respectively, in shaken infant rats. Brain histologies revealed a moderate-to-severe degree of corti cal hemorrhaging in these animals 1 h postinjury. By 7 and 14 days postinjury, there was a 13.3% and 28.7% (p < 0.0001 vs. sham) loss of cortical tissue in shaken infants, respectively, indicating progressive neuronal degeneration. Treatment with 10 mg/kg (ip) of the 21-aminosteroid antioxidant, tirilazad mesylate, 10 min before and 2 h after each episode of shaking, resulted in a 53.1% attenuation of cortical ·OH levels and a 34.9% decrease in brain hemorrhaging (p < 0.05 vs. vehicle). Tirilazad treatment did not, however, significantly effect cortical vitamin E concentrations at 1 h postinjury or the extent of progressive neuronal degeneration at either 7 or 14 days postinjury. The present animal model mimics the brain pathology seen in abused children. Our observation that tirilazad mesylate, an antioxidant-lipid peroxidation inhibitor, significantly reduces cortical OH levels and brain hemorrhaging in shaken infant rats supports a role for oxygen radicals in the pathophysiology of this type of CNS injury. The failure of tirilazad to block progressive cortical degeneration suggests that mechanisms other than free radicals may be of prime importance in the mediation of this aspect of the pathology.

Original languageEnglish
Pages (from-to)693-705
Number of pages13
JournalJournal of Neurotrauma
Volume15
Issue number9
DOIs
StatePublished - Sep 1998

Keywords

  • Cortical hemorrhaging
  • Free radicals
  • Shaken baby syndrome
  • Tirilazad mesylate

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Infant rat model of the shaken baby syndrome: Preliminary characterization and evidence for the role of free radicals in cortical hemorrhaging and progressive neuronal degeneration'. Together they form a unique fingerprint.

Cite this