Influence of Blood Flow Restriction on Neuromuscular Function and Fatigue During Forearm Flexion in Men

Tony R Montgomery, Alex Olmos, Kylie N Sears, Pasquale J Succi, Shane M Hammer, Haley C Bergstrom, Ethan C Hill, Michael A Trevino, Taylor K Dinyer-McNeely

Research output: Contribution to journalArticlepeer-review


Montgomery, TR Jr, Olmos, A, Sears, KN, Succi, PJ, Hammer, SM, Bergstrom, HC, Hill, EC, Trevino, MA, and Dinyer-McNeely, TK. Influence of blood flow restriction on neuromuscular function and fatigue during forearm flexion in men. J Strength Cond Res 38(7): e349-e358, 2024-To determine the effects of blood flow restriction (BFR) on the mean firing rate (MFR) and motor unit action potential amplitude (MUAPAMP) vs. recruitment threshold (RT) relationships during fatiguing isometric elbow flexions. Ten men (24.5 ± 4.0 years) performed isometric trapezoidal contractions at 50% maximum voluntary contraction to task failure with or without BFR, on 2 separate days. For BFR, a cuff was inflated to 60% of the pressure required for full brachial artery occlusion at rest. During both visits, surface electromyography was recorded from the biceps brachii of the dominant limb and the signal was decomposed. A paired-samples t test was used to determine the number of repetitions completed between BFR and CON. ANOVAs (repetition [first, last] × condition [BFR, CON]) were used to determine differences in MFR vs. RT and MUAPAMP vs. RT relationships. Subjects completed more repetitions during CON (12 ± 4) than BFR (9 ± 2; p = 0.012). There was no significant interaction (p > 0.05) between the slopes and y-intercepts during the repetition × condition interaction for MUAPAMP vs. MFR. However, there was a main effect of repetition for the slopes of the MUAPAMP vs. RT (p = 0.041) but not the y-intercept (p = 0.964). Post hoc analysis (collapsed across condition) indicated that the slopes of the MUAPAMP vs. RT during the first repetition was less than the last repetition (first: 0.022 ± 0.003 mv/%MVC; last: 0.028 ± 0.004 mv/%MVC; p = 0.041). Blood flow restriction resulted in the same amount of higher threshold MU recruitment in approximately 75% of the repetitions. Furthermore, there was no change in MFR for either condition, even when taken to task failure. Thus, BFR training may create similar MU responses with less total work completed than training without BFR.

Original languageEnglish
Pages (from-to)e349-e358
JournalJournal of Strength and Conditioning Research
Issue number7
StatePublished - Jul 1 2024

Bibliographical note

Copyright © 2024 National Strength and Conditioning Association.


  • Humans
  • Male
  • Muscle Fatigue/physiology
  • Adult
  • Electromyography
  • Isometric Contraction/physiology
  • Forearm/blood supply
  • Young Adult
  • Muscle, Skeletal/physiology
  • Regional Blood Flow/physiology
  • Blood Flow Restriction Therapy


Dive into the research topics of 'Influence of Blood Flow Restriction on Neuromuscular Function and Fatigue During Forearm Flexion in Men'. Together they form a unique fingerprint.

Cite this