Influence of photoperiod and gonadal steroids on hibernation in the European hamster

Janet M. Darrow, Marilyn J. Duncan, Andrzej Bartke, Antonella Bona-Gallo, Bruce D. Goldman

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Torpor was monitored daily in adult male and female European hamsters (Cricetus cricetus) induced to hibernate by exposure to a cold environment (6 °C). The effect of photoperiodic manipulations or administration of exogenous gonadal steroids was examined in gonadectomized or intact hamsters. 1. Gonadal regression occurred in all short day, but only in some long day, cold-exposed hamsters. Entry into hibernation was not observed until reproductive regression had occurred. Thus, gonadal atrophy appears to be a necessary precondition for hibernation. 2. Castrated hamsters in the short day cold condition showed a significantly greater incidence of torpor than those in the long day cold condition. Hence, photoperiod affected torpor independently of its effect on the gonadal cycle. 3. Testosterone, when administered via silastic capsules at near physiological levels, completely inhibited torpor in gonadectomized male and female hamsters hibernating in the short day cold condition. 4. In ovariectomized females, torpor was unaffected by progesterone treatment, but partially inhibited by estradiol. A greater inhibition of torpor was observed when estradiol-primed females were administered both estradiol and progesterone simultaneously. Thus, the effect of both hormones may be functionally comparable to that of the single testicular hormone. 5. Estradiol inhibited torpor to a greater extent in intact and ovariectomized female hamsters hibernating in long days than those in short days, suggesting an effect of photoperiod on responsiveness to estradiol. These results indicate an inverse relationship between the gonadal and hibernation cycles, and a probable role for gonadal steroids to influence the timing of the hibernation season. However, non-gonadal factors must also be involved in controlling hibernation, since photoperiod affected the incidence of torpor in gonadectomized animals and because hamsters were able to terminate hibernation in the absence of gonadal hormones.

Original languageEnglish
Pages (from-to)339-348
Number of pages10
JournalJournal of Comparative Physiology A
Volume163
Issue number3
DOIs
StatePublished - May 1988

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Animal Science and Zoology
  • Behavioral Neuroscience

Fingerprint

Dive into the research topics of 'Influence of photoperiod and gonadal steroids on hibernation in the European hamster'. Together they form a unique fingerprint.

Cite this