TY - JOUR
T1 - Influence of the novel urease inhibitor N-(n-butyl) thiophosphoric triamide on ruminant nitrogen metabolism
T2 - I. In vitro urea kinetics and substrate digestion
AU - Ludden, P. A.
AU - Harmon, D. L.
AU - Larson, B. T.
AU - Axe, D. E.
PY - 2000/1
Y1 - 2000/1
N2 - Two in vitro digestion experiments were conducted to evaluate the influence of the novel urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on in vitro urea kinetics, substrate digestion, and fermentation characteristics. In Exp. 1, in vitro incubations were conducted in 50-mL test tubes containing .25 g of ground fescue hay to which 0, 6.5, 13, 26, or 52 mg of NBPT in a buffered ruminal fluid innoculum was added. Tubes were incubated in triplicate at 390C and replicated on consecutive days, with NH3 N and urea concentrations measured at 0, 10, 30, 60, 120, 240, and 360 min. Samples for VFA analysis were collected at 6 h, and incubations were continued through 48 h to estimate true digestibility (based on NDF analysis). Increasing the dose of NBPT tended (P < .12) to linearly depress the rate of urea hydrolysis and decreased (P < .0004) subsequent NH3 N formation. Although total VFA concentration at 6 h increased linearly (P < .03), acetate:propionate and estimated true digestibility decreased (P < .01) with increasing NBPT concentration. In Exp. 2, we compared in vitro urea kinetics and digestion of forage-only or mixed forage-grain substrates in response to addition of NBPT. In vitro incubations were conducted in 50-mL test tubes containing either .5 g of ground fescue hay or .5 g of a ground fescue hay and ground corn mixture (50:50, DM basis) to which 0, 6.5, 13, 26, or 52 mg of NBPT in a buffered ruminal fluid innoculum was added. Tubes were incubated in triplicate at 39°C and replicated on consecutive days, with NH3 N and urea concentrations measured at 0, .5, 1, 2, 4, 8, 12, 24, and 48 h. At 48 h, samples for VFA analysis were collected and true digestibility (based on NDF analysis) was estimated. No (P > .10) NBPT dose x substrate interactions were detected. Increasing the dose of NBPT depressed (P < .003) the rate of urea hydrolysis and subsequent NH3 N formation, regardless of substrate. Although total VFA concentration was unaffected (P > .10), the acetate:propionate and estimated true digestibility decreased (P < .002) with higher NBPT addition. In both experiments, the rate of urea degradation was not different (P > .20) from zero for the 26 and 52 mg NBPT treatments, indicating that nearly complete inhibition of urease had been achieved. We conclude that NBPT can be used to reduce the rate of NH3 N release from dietary urea and, thereby, offers the potential to improve nonprotein nitrogen utilization in ruminants.
AB - Two in vitro digestion experiments were conducted to evaluate the influence of the novel urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on in vitro urea kinetics, substrate digestion, and fermentation characteristics. In Exp. 1, in vitro incubations were conducted in 50-mL test tubes containing .25 g of ground fescue hay to which 0, 6.5, 13, 26, or 52 mg of NBPT in a buffered ruminal fluid innoculum was added. Tubes were incubated in triplicate at 390C and replicated on consecutive days, with NH3 N and urea concentrations measured at 0, 10, 30, 60, 120, 240, and 360 min. Samples for VFA analysis were collected at 6 h, and incubations were continued through 48 h to estimate true digestibility (based on NDF analysis). Increasing the dose of NBPT tended (P < .12) to linearly depress the rate of urea hydrolysis and decreased (P < .0004) subsequent NH3 N formation. Although total VFA concentration at 6 h increased linearly (P < .03), acetate:propionate and estimated true digestibility decreased (P < .01) with increasing NBPT concentration. In Exp. 2, we compared in vitro urea kinetics and digestion of forage-only or mixed forage-grain substrates in response to addition of NBPT. In vitro incubations were conducted in 50-mL test tubes containing either .5 g of ground fescue hay or .5 g of a ground fescue hay and ground corn mixture (50:50, DM basis) to which 0, 6.5, 13, 26, or 52 mg of NBPT in a buffered ruminal fluid innoculum was added. Tubes were incubated in triplicate at 39°C and replicated on consecutive days, with NH3 N and urea concentrations measured at 0, .5, 1, 2, 4, 8, 12, 24, and 48 h. At 48 h, samples for VFA analysis were collected and true digestibility (based on NDF analysis) was estimated. No (P > .10) NBPT dose x substrate interactions were detected. Increasing the dose of NBPT depressed (P < .003) the rate of urea hydrolysis and subsequent NH3 N formation, regardless of substrate. Although total VFA concentration was unaffected (P > .10), the acetate:propionate and estimated true digestibility decreased (P < .002) with higher NBPT addition. In both experiments, the rate of urea degradation was not different (P > .20) from zero for the 26 and 52 mg NBPT treatments, indicating that nearly complete inhibition of urease had been achieved. We conclude that NBPT can be used to reduce the rate of NH3 N release from dietary urea and, thereby, offers the potential to improve nonprotein nitrogen utilization in ruminants.
KW - In vitro
KW - Urea
KW - Urease inhibitors
UR - http://www.scopus.com/inward/record.url?scp=0033631165&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033631165&partnerID=8YFLogxK
U2 - 10.2527/2000.781181x
DO - 10.2527/2000.781181x
M3 - Article
C2 - 10682820
AN - SCOPUS:0033631165
SN - 0021-8812
VL - 78
SP - 181
EP - 187
JO - Journal of Animal Science
JF - Journal of Animal Science
IS - 1
ER -