Information-theoretic metric learning: 2-D linear projections of neural data for visualization

Austin J. Brockmeier, Luis G. Sanchez Giraldo, Matthew S. Emigh, Jihye Bae, John S. Choi, Joseph T. Francis, Jose C. Principe

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Intracortical neural recordings are typically high-dimensional due to many electrodes, channels, or units and high sampling rates, making it very difficult to visually inspect differences among responses to various conditions. By representing the neural response in a low-dimensional space, a researcher can visually evaluate the amount of information the response carries about the conditions. We consider a linear projection to 2-D space that also parametrizes a metric between neural responses. The projection, and corresponding metric, should preserve class-relevant information pertaining to different behavior or stimuli. We find the projection as a solution to the information-theoretic optimization problem of maximizing the information between the projected data and the class labels. The method is applied to two datasets using different types of neural responses: motor cortex neuronal firing rates of a macaque during a center-out reaching task, and local field potentials in the somatosensory cortex of a rat during tactile stimulation of the forepaw. In both cases, projected data points preserve the natural topology of targets or peripheral touch sites. Using the learned metric on the neural responses increases the nearest-neighbor classification rate versus the original data; thus, the metric is tuned to distinguish among the conditions.

Original languageEnglish
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages5586-5589
Number of pages4
DOIs
StatePublished - 2013
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: Jul 3 2013Jul 7 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period7/3/137/7/13

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Information-theoretic metric learning: 2-D linear projections of neural data for visualization'. Together they form a unique fingerprint.

Cite this