1 Scopus citations


Monoamine oxidase (MAO) is an enzyme located on the outer mitochondrial membrane that metabolizes amine substrates like serotonin, norepinephrine and dopamine. MAO inhibitors (MAOIs) are frequently utilized to treat disorders such as major depression or Parkinson's disease (PD), though their effects on brain mitochondrial bioenergetics are unclear. These studies measured bioenergetic activity in mitochondria isolated from the mouse cortex in the presence of inhibitors of either MAO-A, MAO-B, or both isoforms. We found that only 10 μM clorgyline, the selective inhibitor of MAO-A and not MAO-B, increased mitochondrial oxygen consumption rate in State V(CI) respiration compared to vehicle treatment. We then assessed mitochondrial bioenergetics, reactive oxygen species (ROS) production, and Electron Transport Chain (ETC) complex function in the presence of 0, 5, 10, 20, 40, or 80 μM of clorgyline to determine if this change was dose-dependent. The results showed increased oxygen consumption rates across the majority of respiration states in mitochondria treated with 5, 10, or 20 μM with significant bioenergetic inhibition at 80 μM clorgyline. Next, we assessed mitochondrial ROS production in the presence of the same concentrations of clorgyline in two different states: high mitochondrial membrane potential (ΔΨm) induced by oligomycin and low ΔΨm induced by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP). There were no changes in ROS production in the presence of 5, 10, 20, or 40 μM clorgyline compared to vehicle after the addition of oligomycin or FCCP. There was a significant increase in mitochondrial ROS in the presence of 80 μM clorgyline after FCCP addition, as well as reduced Complex I and Complex II activities, which are consistent with inhibition of bioenergetics seen at this dose. There were no changes in Complex I, II, or IV activities in mitochondria treated with low doses of clorgyline. These studies shed light on the direct effect of MAO-A inhibition on brain mitochondrial bioenergetic function, which may be a beneficial outcome for those taking these medications.

Original languageEnglish
Article number114356
JournalExperimental Neurology
StatePublished - May 2023

Bibliographical note

Funding Information:
The authors would like to thank Jozsef Gal, PhD for his intellectual contributions during the execution of Western Blotting. OJK received support from the “ Neurobiology of CNS Injury & Repair ” Training Grant ( 5 T32 NS077889 ). GAG received support from the Charles D. Lucas, Jr. Professorship for Parkinson's Disease Research. PGS received support from the Kentucky Spinal Cord and Head Injury Research Trust (KSCHIRT) # 20-7A and KSCHIRT Chair #3.

Publisher Copyright:
© 2023 Elsevier Inc.


  • Bioenergetics
  • Clorgyline
  • Reactive oxygen species

ASJC Scopus subject areas

  • Neurology
  • Developmental Neuroscience


Dive into the research topics of 'Inhibition of monoamine oxidase-a increases respiration in isolated mouse cortical mitochondria'. Together they form a unique fingerprint.

Cite this