Abstract
Telomerase, via its catalytic component telomerase reverse transcriptase (TERT), extends telomeres of eukaryotic chromosomes. The importance of this reaction is related to the fact that telomere shortening is a rate-limiting mechanism for human life span that induces cell senescence and contributes to the development of age-related pathologies. The aim of the present study was to evaluate whether the modulation of telomerase activity can influence human immunodeficiency virus type 1 (HIV-1)-mediated dysfunction of human brain endothelial cells (hCMEC/D3 cells) and transendothelial migration of HIV-1-infected cells. Telomerase activity was modulated in hCMEC/D3 cells via small interfering RNA targeting human TERT (hTERT) or by using a specific pharmacological inhibitor of telomerase, TAG-6. The inhibition of hTERT resulted in the upregulation of HIV-1-induced overexpression of intercellular adhesion molecule-1 via the nuclear factor-κB-regulated mechanism and induced the transendothelial migration of HIV-1-infected monocytic U937 cells. In addition, the blocking of hTERT activity potentiated a HIV-induced downregulation of the expression of tight junction proteins. These results were confirmed in TERT-deficient mice injected with HIV-1-specific protein Tat into the cerebral vasculature. Further studies revealed that the upregulation of matrix metalloproteinase-9 is the underlying mechanisms of disruption of tight junction proteins in hCMEC/D3 cells with inhibited TERT and exposed to HIV-1. These results indicate that the senescence of brain endothelial cells may predispose to the HIV-induced upregulation of inflammatory mediators and the disruption of the barrier function at the level of the brain endothelium.
Original language | English |
---|---|
Pages (from-to) | H1136-H1145 |
Journal | American Journal of Physiology - Heart and Circulatory Physiology |
Volume | 298 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2010 |
Keywords
- Blood-brain barrier
- Human immunodeficiency virus type 1
- Inflammatory mediators
ASJC Scopus subject areas
- Physiology
- Cardiology and Cardiovascular Medicine
- Physiology (medical)