Abstract
Discrete orthogonal basis restoration (DOBR) is a linear, non-iterative, and robust method for solving inverse problems for systems characterized by shift-variant transfer functions. This simulation study evaluates the feasibility of using DOBR for reconstructing emission computed tomographic (ECT) images. The imaging system model uses typical SPECT parameters and incorporates the effects of attenuation, spatially-variant PSF, and Poisson noise in the projection process. Sample reconstructions and statistical error analyses for a class of digital phantoms compare the DOBR performance for Hartley and Walsh basis functions. Test results confirm that DOBR with either basis set produces images with good statistical properties. No problems were encountered with reconstruction instability. The flexibility of the DOBR method and its consistent performance warrants further investigation of DOBR as a means of ECT image reconstruction.
Original language | English |
---|---|
Pages | 1718-1722 |
Number of pages | 5 |
State | Published - 1996 |
Event | Proceedings of the 1996 IEEE Nuclear Science Symposium. Part 1 (of 3) - Anaheim, CA, USA Duration: Nov 2 1996 → Nov 9 1996 |
Conference
Conference | Proceedings of the 1996 IEEE Nuclear Science Symposium. Part 1 (of 3) |
---|---|
City | Anaheim, CA, USA |
Period | 11/2/96 → 11/9/96 |
ASJC Scopus subject areas
- Radiation
- Nuclear and High Energy Physics
- Radiology Nuclear Medicine and imaging