Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applications in agriculture

Lynnette M.A. Dirk, Jack J. Schmidt, Yiying Cai, Jonathan C. Barnes, Katherine M. Hanger, Nihar R. Nayak, Mark A. Williams, Robert B. Grossman, Robert L. Houtz, David W. Rodgers

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The crystal structure of AtPDF1B [Arabidopsis thaliana PDF (peptide deformylase) 1B; EC 3.5.1.88], a plant specific deformylase, has been determined at a resolution of 2.4 Å (1 Å = 0.1 nm). The overall fold of AtPDF1B is similar to other peptide deformylases that have been reported. Evidence from the crystal structure and gel filtration chromatography indicates that AtPDF1B exists as a symmetric dimer. PDF1B is essential in plants and has a preferred substrate specificity towards the PS II (photosystem II) D1 polypeptide. Comparative analysis of AtPDF1B, AtPDF1A, and the type 1B deformylase from Escherichia coli, identifies a number of differences in substrate binding subsites that might account for variations in sequence preference. A model of the N-terminal five amino acids from the D1 polypeptide bound in the active site of AtPDF1B suggests an influence of Tyr178 as a structural determinant for polypeptide substrate specificity through hydrogen bonding with Thr2 in the D1 sequence. Kinetic analyses using a polypeptide mimic of the D1 N-terminus was performed on AtPDF1B mutated at Tyr178 to alanine, phenylalanine or arginine (equivalent residue in AtPDF1A). The results suggest that, whereas Tyr178 can influence catalytic activity, other residues contribute to the overall preference for the D1 polypeptide.

Original languageEnglish
Pages (from-to)417-427
Number of pages11
JournalBiochemical Journal
Volume413
Issue number3
DOIs
StatePublished - Aug 1 2008

Keywords

  • Actinonin
  • Arabidopsis
  • Chloroplast
  • Co-translational
  • Peptide deformylase
  • Protein processing

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applications in agriculture'. Together they form a unique fingerprint.

Cite this