TY - JOUR
T1 - Integration of finite element software in undergraduate engineering courses
AU - Baker, John R.
AU - Capece, Vincent R.
AU - Lee, Rhonda J.
PY - 2002
Y1 - 2002
N2 - Computer-based engineering analysis tools have become more powerful and user-friendly in recent years. Most commercial software packages are now available for use on standard Windows-based PC's. Aided by increases in readily available computing power, finite element analysis (FEA) codes, in particular, have gained widespread use. FEA is now considered by many to be a standard tool for engineers. This paper outlines the incorporation of assignments based on the commercial FEA code, ANSYS, into standard lecture courses in mechanical and chemical engineering. It is now typical, at least in mechanical engineering (ME) curricula, to include course(s) specific to FEA, and these courses often include use of commercial FEA codes. Now that these codes have become more user-friendly and their plotting and animating capabilities have become more sophisticated, they can be used effectively to illustrate concepts encountered in a range of undergraduate engineering courses. The examples included in this paper are from three courses: heat transfer, fluid mechanics, and mechanical vibrations. The FEA assignments are used to complement core lecture material in the courses. They are designed so that no previous ANSYS experience, or FEA background, is required. In addition to aiding students in understanding the basic theory related to specific courses, incorporation of the software in a range of courses should increase students' awareness of the broad applicability of general-purpose FEA codes, and the advantages of using these codes as tools. It seems reasonable to expect that engineers in the 21st century will need to be comfortable with the use of FEA software and other types of analysis software in order to be effective in the workplace. Limiting student use of FEA codes to only FEA courses may not provide sufficient emphasis to the idea that these codes can be used to an engineer's advantage in many scenarios.
AB - Computer-based engineering analysis tools have become more powerful and user-friendly in recent years. Most commercial software packages are now available for use on standard Windows-based PC's. Aided by increases in readily available computing power, finite element analysis (FEA) codes, in particular, have gained widespread use. FEA is now considered by many to be a standard tool for engineers. This paper outlines the incorporation of assignments based on the commercial FEA code, ANSYS, into standard lecture courses in mechanical and chemical engineering. It is now typical, at least in mechanical engineering (ME) curricula, to include course(s) specific to FEA, and these courses often include use of commercial FEA codes. Now that these codes have become more user-friendly and their plotting and animating capabilities have become more sophisticated, they can be used effectively to illustrate concepts encountered in a range of undergraduate engineering courses. The examples included in this paper are from three courses: heat transfer, fluid mechanics, and mechanical vibrations. The FEA assignments are used to complement core lecture material in the courses. They are designed so that no previous ANSYS experience, or FEA background, is required. In addition to aiding students in understanding the basic theory related to specific courses, incorporation of the software in a range of courses should increase students' awareness of the broad applicability of general-purpose FEA codes, and the advantages of using these codes as tools. It seems reasonable to expect that engineers in the 21st century will need to be comfortable with the use of FEA software and other types of analysis software in order to be effective in the workplace. Limiting student use of FEA codes to only FEA courses may not provide sufficient emphasis to the idea that these codes can be used to an engineer's advantage in many scenarios.
UR - http://www.scopus.com/inward/record.url?scp=2442545839&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2442545839&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:2442545839
SN - 1069-3769
VL - 12
SP - 10
EP - 19
JO - Computers in Education Journal
JF - Computers in Education Journal
IS - 2
ER -