Abstract
Constructing a point cloud for a large geographic region, such as a state or country, can require multiple years of effort. Often several vendors will be used to acquire LiDAR data, and a single region may be captured by multiple LiDAR scans. A key challenge is maintaining consistency between these scans, which includes point density, number of returns, and intensity. Intensity in particular can be very different between scans, even in areas that are overlapping. Harmonizing the intensity between scans to remove these discrepancies is expensive and time consuming. In this paper, we propose a novel method for point cloud harmonization based on deep neural networks. We evaluate our method quantitatively and qualitatively using a high quality real world LiDAR dataset. We compare our method to several baselines, including standard interpolation methods as well as histogram matching. We show that our method performs as well as the best baseline in areas with similar intensity distributions, and outperforms all baselines in areas with different intensity distributions. Source code is available at https://github.com/mvrl/lidar-harmonization.
Original language | English |
---|---|
Title of host publication | IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
Pages | 4324-4327 |
Number of pages | 4 |
ISBN (Electronic) | 9781665403696 |
DOIs | |
State | Published - 2021 |
Event | 2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 - Brussels, Belgium Duration: Jul 12 2021 → Jul 16 2021 |
Publication series
Name | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|---|
Volume | 2021-July |
Conference
Conference | 2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 |
---|---|
Country/Territory | Belgium |
City | Brussels |
Period | 7/12/21 → 7/16/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE
Keywords
- Intensity harmonization
- LiDAR
- Machine learning
- Point cloud interpolation
ASJC Scopus subject areas
- Computer Science Applications
- General Earth and Planetary Sciences