TY - JOUR
T1 - Intracranial VCAM1 at time of mechanical thrombectomy predicts ischemic stroke severity
AU - Maglinger, Benton
AU - Sands, Madison
AU - Frank, Jacqueline A.
AU - McLouth, Christopher J.
AU - Trout, Amanda L.
AU - Roberts, Jill M.
AU - Grupke, Stephen
AU - Turchan-Cholewo, Jadwiga
AU - Stowe, Ann M.
AU - Fraser, Justin F.
AU - Pennypacker, Keith R.
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Emergent large vessel occlusion (ELVO) strokes are devastating ischemic vascular events for which novel treatment options are needed. Using vascular cell adhesion molecule 1 (VCAM1) as a prototype, the objective of this study was to identify proteomic biomarkers and network signaling functions that are potential therapeutic targets for adjuvant treatment for mechanical thrombectomy. Methods: The blood and clot thrombectomy and collaboration (BACTRAC) study is a continually enrolling tissue bank and registry from stroke patients undergoing mechanical thrombectomy. Plasma proteins from intracranial (distal to clot) and systemic arterial blood (carotid) were analyzed by Olink Proteomics for N=42 subjects. Statistical analysis of plasma proteomics used independent sample t tests, correlations, linear regression, and robust regression models to determine network signaling and predictors of clinical outcomes. Data and network analyses were performed using IBM SPSS Statistics, SAS v 9.4, and STRING V11. Results: Increased systemic (p<0.001) and intracranial (p=0.013) levels of VCAM1 were associated with the presence of hypertension. Intracranial VCAM1 was positively correlated to both infarct volume (p=0.032; r=0.34) and edema volume (p=0.026; r=0.35). The %∆ in NIHSS from admittance to discharge was found to be significantly correlated to both systemic (p=0.013; r = −0.409) and intracranial (p=0.011; r = −0.421) VCAM1 levels indicating elevated levels of systemic and intracranial VCAM1 are associated with reduced improvement of stroke severity based on NIHSS from admittance to discharge. STRING-generated analyses identified biologic functional descriptions as well as function-associated proteins from the predictive models of infarct and edema volume. Conclusions: The current study provides novel data on systemic and intracranial VCAM1 in relation to stroke comorbidities, stroke severity, functional outcomes, and the role VCAM1 plays in complex protein-protein signaling pathways. These data will allow future studies to develop predictive biomarkers and proteomic targets for drug development to improve our ability to treat a devastating pathology.
AB - Background: Emergent large vessel occlusion (ELVO) strokes are devastating ischemic vascular events for which novel treatment options are needed. Using vascular cell adhesion molecule 1 (VCAM1) as a prototype, the objective of this study was to identify proteomic biomarkers and network signaling functions that are potential therapeutic targets for adjuvant treatment for mechanical thrombectomy. Methods: The blood and clot thrombectomy and collaboration (BACTRAC) study is a continually enrolling tissue bank and registry from stroke patients undergoing mechanical thrombectomy. Plasma proteins from intracranial (distal to clot) and systemic arterial blood (carotid) were analyzed by Olink Proteomics for N=42 subjects. Statistical analysis of plasma proteomics used independent sample t tests, correlations, linear regression, and robust regression models to determine network signaling and predictors of clinical outcomes. Data and network analyses were performed using IBM SPSS Statistics, SAS v 9.4, and STRING V11. Results: Increased systemic (p<0.001) and intracranial (p=0.013) levels of VCAM1 were associated with the presence of hypertension. Intracranial VCAM1 was positively correlated to both infarct volume (p=0.032; r=0.34) and edema volume (p=0.026; r=0.35). The %∆ in NIHSS from admittance to discharge was found to be significantly correlated to both systemic (p=0.013; r = −0.409) and intracranial (p=0.011; r = −0.421) VCAM1 levels indicating elevated levels of systemic and intracranial VCAM1 are associated with reduced improvement of stroke severity based on NIHSS from admittance to discharge. STRING-generated analyses identified biologic functional descriptions as well as function-associated proteins from the predictive models of infarct and edema volume. Conclusions: The current study provides novel data on systemic and intracranial VCAM1 in relation to stroke comorbidities, stroke severity, functional outcomes, and the role VCAM1 plays in complex protein-protein signaling pathways. These data will allow future studies to develop predictive biomarkers and proteomic targets for drug development to improve our ability to treat a devastating pathology.
KW - Biomarkers
KW - Infarct volume
KW - Ischemic stroke
KW - Mechanical thrombectomy
KW - Proteomics
KW - Vascular cell adhesion molecule 1
UR - http://www.scopus.com/inward/record.url?scp=85105664640&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85105664640&partnerID=8YFLogxK
U2 - 10.1186/s12974-021-02157-4
DO - 10.1186/s12974-021-02157-4
M3 - Article
C2 - 33971895
AN - SCOPUS:85105664640
SN - 1742-2094
VL - 18
JO - Journal of Neuroinflammation
JF - Journal of Neuroinflammation
IS - 1
M1 - 109
ER -