TY - JOUR
T1 - Intrinsic characteristics of coal combustion residues and their environmental impacts
T2 - A case study for Bangladesh
AU - Majlis, Abdul Baquee Khan
AU - Habib, Md Ahosan
AU - Khan, Rahat
AU - Phoungthong, Khamphe
AU - Techato, Kuaanan
AU - Islam, Md Aminul
AU - Nakashima, Satoru
AU - Islam, Abu Reza Md Towfiqul
AU - Hood, Madison M.
AU - Hower, James C.
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/9/15
Y1 - 2022/9/15
N2 - This study has focused on petrography, geochemistry, radiochemical, and leaching properties of coal combustion residues (CCRs), their leachates and nearby waters from the Barapukuria coal-fired power-plant (BCPP) to evaluate the potential environmental impacts and human health hazards for the first in Bangladesh. The CCRs, used in this study are predominantly comprised of Al-Si-rich glassy materials (94.8%) followed by crystallites (3.6%), notably quartz, mullite, and spinel with rock-fragments (0.3%); and un-burnt organic constituents (1.3%) such as anisotropic coke (0.8%) and slightly altered inertinite (0.5%). Hematite, magnetite, cristobalite, monazite, zircon, rutile, tourmaline and sillimanite were also identified as trace minerals. Elemental contents are found to be elevated (2.1–14.2 times) in the fly ash (FA) and bottom ash (BA), as compared to world coal-ash average with the exceptions of Ni in FA; and of Zn, As, Cu, and Hg in BA. The sum of detected rare earth elements is significantly high as compared to the world FA, Indian and Chinese ash residues. The specific activities of CCR are comparatively higher by a factor of 3.7 (226Ra) to 6.2 (232Th) than those of the world average. The examined spheres, particles, and agglomerates of FA are predominantly comprised of C, Al, and Si as major while, K, Ca, Mg, Fe, W and Ti as minor elements. On the other hand, extractable amounts of soluble potentially toxic elements in FA leachates are 7.7% for Se, 4.8% for Zn, and in BA 5.7% for As and 3.1% for Se and others are < 1%. Metals are substantially released from FA in the range of 8.5 (for Cr) to 9650 (for Zn) ppb and 0.002% (for Cr) −7.7% (for Se), while from BA below detection level (for Cr) to 940 ppb (for Mn). The concentration of hazardous metals in the discharged waste water and water ash pond were higher than those were found in nearby pond- and ground-water sources around the BCPP. Ecological and radiological risk indices suggest moderate-risk derived from FA and low-risk from BA.
AB - This study has focused on petrography, geochemistry, radiochemical, and leaching properties of coal combustion residues (CCRs), their leachates and nearby waters from the Barapukuria coal-fired power-plant (BCPP) to evaluate the potential environmental impacts and human health hazards for the first in Bangladesh. The CCRs, used in this study are predominantly comprised of Al-Si-rich glassy materials (94.8%) followed by crystallites (3.6%), notably quartz, mullite, and spinel with rock-fragments (0.3%); and un-burnt organic constituents (1.3%) such as anisotropic coke (0.8%) and slightly altered inertinite (0.5%). Hematite, magnetite, cristobalite, monazite, zircon, rutile, tourmaline and sillimanite were also identified as trace minerals. Elemental contents are found to be elevated (2.1–14.2 times) in the fly ash (FA) and bottom ash (BA), as compared to world coal-ash average with the exceptions of Ni in FA; and of Zn, As, Cu, and Hg in BA. The sum of detected rare earth elements is significantly high as compared to the world FA, Indian and Chinese ash residues. The specific activities of CCR are comparatively higher by a factor of 3.7 (226Ra) to 6.2 (232Th) than those of the world average. The examined spheres, particles, and agglomerates of FA are predominantly comprised of C, Al, and Si as major while, K, Ca, Mg, Fe, W and Ti as minor elements. On the other hand, extractable amounts of soluble potentially toxic elements in FA leachates are 7.7% for Se, 4.8% for Zn, and in BA 5.7% for As and 3.1% for Se and others are < 1%. Metals are substantially released from FA in the range of 8.5 (for Cr) to 9650 (for Zn) ppb and 0.002% (for Cr) −7.7% (for Se), while from BA below detection level (for Cr) to 940 ppb (for Mn). The concentration of hazardous metals in the discharged waste water and water ash pond were higher than those were found in nearby pond- and ground-water sources around the BCPP. Ecological and radiological risk indices suggest moderate-risk derived from FA and low-risk from BA.
KW - Barapukuria power-plant, Bangladesh
KW - Bottom ash
KW - Comprehensive characterization
KW - Ecological and radiological risks
KW - Environmental impacts
KW - Fly ash
UR - http://www.scopus.com/inward/record.url?scp=85131358566&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131358566&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2022.124711
DO - 10.1016/j.fuel.2022.124711
M3 - Article
AN - SCOPUS:85131358566
SN - 0016-2361
VL - 324
JO - Fuel
JF - Fuel
M1 - 124711
ER -