Kruppel-like factor 4-dependent Staufen1-mediated mRNA decay regulates cortical neurogenesis

Byoung San Moon, Jinlun Bai, Mingyang Cai, Chunming Liu, Jiandang Shi, Wange Lu

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Kruppel-like factor 4 (Klf4) is a zinc-finger-containing protein that plays a critical role in diverse cellular physiology. While most of these functions attribute to its role as a transcription factor, it is postulated that Klf4 may play a role other than transcriptional regulation. Here we demonstrate that Klf4 loss in neural progenitor cells (NPCs) leads to increased neurogenesis and reduced self-renewal in mice. In addition, Klf4 interacts with RNA-binding protein Staufen1 (Stau1) and RNA helicase Ddx5/17. They function together as a complex to maintain NPC self-renewal. We report that Klf4 promotes Stau1 recruitment to the 3′-untranslated region of neurogenesis-associated mRNAs, increasing Stau1-mediated mRNA decay (SMD) of these transcripts. Stau1 depletion abrogated SMD of target mRNAs and rescued neurogenesis defects in Klf4-overexpressing NPCs. Furthermore, Ddx5/17 knockdown significantly blocked Klf4-mediated mRNA degradation. Our results highlight a novel molecular mechanism underlying stability of neurogenesis-associated mRNAs controlled by the Klf4/Ddx5/17/Stau1 axis during mammalian corticogenesis.

Original languageEnglish
Article number401
JournalNature Communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

Bibliographical note

Publisher Copyright:
© 2018 The Author(s).

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Kruppel-like factor 4-dependent Staufen1-mediated mRNA decay regulates cortical neurogenesis'. Together they form a unique fingerprint.

Cite this