TY - JOUR
T1 - Lack of osteopontin improves cardiac function in streptozotocin-induced diabetic mice
AU - Subramanian, Venkateswaran
AU - Krishnamurthy, Prasanna
AU - Singh, Krishna
AU - Singh, Mahipal
PY - 2007/1
Y1 - 2007/1
N2 - The purpose of this study was to investigate the role of osteopontin (OPN) in diabetic hearts. Diabetes was induced in wild-type (WT) and OPN knockout (KO) mice by using streptozotocin (150 mg/kg) injection. Left ventricular (LV) structural and functional remodeling was studied 30 and 60 days after induction of diabetes. Induction of diabetes increased OPN expression in cardiac myocytes. Heart weight-to-body weight ratio was increased in both diabetic (D) groups. Lung wet weight-to-dry weight ratio was increased only in the WT-D group. Peak left ventricular (LV) developed pressures measured using Langendorff perfusion analyses were reduced to a greater extent in WT-D versus KO-D group. LV end-diastolic pressure-volume curve exhibited a significant leftward shift in WT-D but not in KO-D group. LV end-diastolic diameter, percent fractional shortening, and the ratio of peak velocity of early and late filling (E/A wave) were significantly reduced in WT-D mice as analyzed by echocardiography. The increase in cardiac myocyte apoptosis and fibrosis was significantly higher in the WT-D group. Expression of atrial natriuretic peptide and transforming growth factor-β1 was significantly increased in the WT-D group. Induction of diabetes increased protein kinase C (PKC) phosphorylation in both groups. However, phosphorylation of PKC-βII was significantly higher in the WT-D group, whereas phosphorylation of PKC-ζ was significantly higher in the KO-D group. Levels of peroxisome proliferator-activated receptor-γ were significantly decreased in the WT-D group but not in the KO-D group. Thus increased expression of OPN may play a deleterious role during streptozotocin-induced diabetic cardiomyopathy with effects on cardiac fibrosis, hypertrophy, and myocyte apoptosis.
AB - The purpose of this study was to investigate the role of osteopontin (OPN) in diabetic hearts. Diabetes was induced in wild-type (WT) and OPN knockout (KO) mice by using streptozotocin (150 mg/kg) injection. Left ventricular (LV) structural and functional remodeling was studied 30 and 60 days after induction of diabetes. Induction of diabetes increased OPN expression in cardiac myocytes. Heart weight-to-body weight ratio was increased in both diabetic (D) groups. Lung wet weight-to-dry weight ratio was increased only in the WT-D group. Peak left ventricular (LV) developed pressures measured using Langendorff perfusion analyses were reduced to a greater extent in WT-D versus KO-D group. LV end-diastolic pressure-volume curve exhibited a significant leftward shift in WT-D but not in KO-D group. LV end-diastolic diameter, percent fractional shortening, and the ratio of peak velocity of early and late filling (E/A wave) were significantly reduced in WT-D mice as analyzed by echocardiography. The increase in cardiac myocyte apoptosis and fibrosis was significantly higher in the WT-D group. Expression of atrial natriuretic peptide and transforming growth factor-β1 was significantly increased in the WT-D group. Induction of diabetes increased protein kinase C (PKC) phosphorylation in both groups. However, phosphorylation of PKC-βII was significantly higher in the WT-D group, whereas phosphorylation of PKC-ζ was significantly higher in the KO-D group. Levels of peroxisome proliferator-activated receptor-γ were significantly decreased in the WT-D group but not in the KO-D group. Thus increased expression of OPN may play a deleterious role during streptozotocin-induced diabetic cardiomyopathy with effects on cardiac fibrosis, hypertrophy, and myocyte apoptosis.
KW - Apoptosis
KW - Diabetes
KW - Fibrosis
KW - Heart
KW - Hypertrophy
UR - http://www.scopus.com/inward/record.url?scp=33846196307&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846196307&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00569.2006
DO - 10.1152/ajpheart.00569.2006
M3 - Article
C2 - 16980342
AN - SCOPUS:33846196307
SN - 0363-6135
VL - 292
SP - H673-H683
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 1
ER -