Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide

Abozar Akbari, Phillip Sheath, Samuel T. Martin, Dhanraj B. Shinde, Mahdokht Shaibani, Parama Chakraborty Banerjee, Rachel Tkacz, Dibakar Bhattacharyya, Mainak Majumder

Research output: Contribution to journalArticlepeer-review

507 Scopus citations

Abstract

Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in <5 s. Pressure driven transport data demonstrate high retention (>90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71±5 l m-2 hr-1 bar-1 for 150±15 nm thick membranes).

Original languageEnglish
Article number10891
JournalNature Communications
Volume7
DOIs
StatePublished - Mar 7 2016

Bibliographical note

Funding Information:
We acknowledge funding from the Australian Research Council through an ARC Discovery (DP 110100082), ARC Linkage (LP 140100959) grant and also partial support from University of Kentucky NSF EPSCoR grant. We thank Professor Tam Sridhar and Dr Duc Nguyen for the rheological measurements.

ASJC Scopus subject areas

  • Chemistry (all)
  • Biochemistry, Genetics and Molecular Biology (all)
  • Physics and Astronomy (all)

Fingerprint

Dive into the research topics of 'Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide'. Together they form a unique fingerprint.

Cite this