Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria

Research output: Contribution to journalArticlepeer-review

262 Scopus citations


Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology. Affected women frequently have metabolic disturbances including insulin resistance and dysregulation of glucose homeostasis. PCOS is diagnosed with two different sets of diagnostic criteria, resulting in a phenotypic spectrum of PCOS cases. The genetic similarities between cases diagnosed based on the two criteria have been largely unknown. Previous studies in Chinese and European subjects have identified 16 loci associated with risk of PCOS. We report a fixed-effect, inverse-weighted-variance meta-analysis from 10,074 PCOS cases and 103,164 controls of European ancestry and characterisation of PCOS related traits. We identified 3 novel loci (near PLGRKT, ZBTB16 and MAPRE1), and provide replication of 11 previously reported loci. Only one locus differed significantly in its association by diagnostic criteria; otherwise the genetic architecture was similar between PCOS diagnosed by self-report and PCOS diagnosed by NIH or non-NIH Rotterdam criteria across common variants at 13 loci. Identified variants were associated with hyperandrogenism, gonadotropin regulation and testosterone levels in affected women. Linkage disequilibrium score regression analysis revealed genetic correlations with obesity, fasting insulin, type 2 diabetes, lipid levels and coronary artery disease, indicating shared genetic architecture between metabolic traits and PCOS. Mendelian randomization analyses suggested variants associated with body mass index, fasting insulin, menopause timing, depression and male-pattern balding play a causal role in PCOS. The data thus demonstrate 3 novel loci associated with PCOS and similar genetic architecture for all diagnostic criteria. The data also provide the first genetic evidence for a male phenotype for PCOS and a causal link to depression, a previously hypothesized comorbid disease. Thus, the genetics provide a comprehensive view of PCOS that encompasses multiple diagnostic criteria, gender, reproductive potential and mental health.

Original languageEnglish
Article numbere1007813
JournalPLoS Genetics
Issue number12
StatePublished - Dec 2018

Bibliographical note

Funding Information:
This work has been supported by MRC grant MC_U106179472 (FD, KO, JRBP), Samuel Oschin Comprehensive Cancer Institute Developmental Funds, Center for Bioinformatics and Functional Genomics and Department of Biomedical Sciences Developmental Funds (MRJ), NCI P30CA177558 (CH), NCI UM1CA186107 (PK), European Regional Development Fund (Project No. 2014-2020.4.01.15-0012) and the European Union’s Horizon 2020 research and innovation program under grant agreements No 692065 (TL, RM, AS) and 692145 (RM), NICHD R01HD065029 (RS), Estonian Ministry of Education and Research (grant IUT34-16 to TL), NICHD R01HD057450 (MU), NICHD P50HD044405 (AD), NICHD R01HD057223 (AD), R01HD085227 (MGH, AD), deCode Genetics (GT, UT, KS, US), Raine Medical Research Foundation Priming Grant (BHM), SCGOPHCG RAC 2015-16/034 (SGW, BGAS), 2016-17/018 (BGAS), NIHR BRC, Wellcome Trust, MRC (TDS), Eris M. Field Chair in Diabetes Research (MOG), NIDDK P30 DK063491 (MOG), NIDDK U01DK094431, U01DK048381 (DE), NICHD U10HD38992 (RL), Estonian Ministry of Education and Research (grant IUT34-16), Enterprise Estonia (grant EU48695); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, grant SARM, EU324509 to AS), Wellcome (090532, 098381, 203141); European Commission (ENGAGE: HEALTH-F4-2007-201413 to MIM), MRC G0802782, MR/M012638/1 (SF), Li Ka Shing Foundation, WT-SSI/John Fell Funds, NIHR Biomedical Research Centre, Oxford, Widenlife and NICHD 5P50HD028138-27 (CML), NICHD R01HD065029, ADA 1-10-CT-57, Harvard Clinical and Translational Science Center, from the National Center for Research Resources 1UL1 RR025758 (CKW).

Publisher Copyright:
© 2018 Day et al.

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research


Dive into the research topics of 'Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria'. Together they form a unique fingerprint.

Cite this