Latent class model with application to speaker diarization

Liang He, Xianhong Chen, Can Xu, Yi Liu, Jia Liu, Michael T. Johnson

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In this paper, we apply a latent class model (LCM) to the task of speaker diarization. LCM is similar to Patrick Kenny’s variational Bayes (VB) method in that it uses soft information and avoids premature hard decisions in its iterations. In contrast to the VB method, which is based on a generative model, LCM provides a framework allowing both generative and discriminative models. The discriminative property is realized through the use of i-vector (Ivec), probabilistic linear discriminative analysis (PLDA), and a support vector machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid are introduced. In addition, three further improvements are applied to enhance its performance. (1) Adding neighbor windows to extract more speaker information for each short segment. (2) Using a hidden Markov model to avoid frequent speaker change points. (3) Using an agglomerative hierarchical cluster to do initialization and present hard and soft priors, in order to overcome the problem of initial sensitivity. Experiments on the National Institute of Standards and Technology Rich Transcription 2009 speaker diarization database, under the condition of a single distant microphone, show that the diarization error rate (DER) of the proposed methods has substantial relative improvements compared with mainstream systems. Compared to the VB method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments on our collected database, CALLHOME97, CALLHOME00, and SRE08 short2-summed trial conditions also show that the proposed LCM-Ivec-Hybrid system has the best overall performance.

Original languageEnglish
Article number12
JournalEurasip Journal on Audio, Speech, and Music Processing
Volume2019
Issue number1
DOIs
StatePublished - Dec 1 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).

Keywords

  • Latent class model
  • Speaker diarization
  • Variational Bayes
  • i-vector

ASJC Scopus subject areas

  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Latent class model with application to speaker diarization'. Together they form a unique fingerprint.

Cite this