Learning 3D shape from a single facial image via non-linear manifold embedding and alignment

Xianwang Wang, Ruigang Yang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

The 3D reconstruction of a face from a single frontal image is an ill-posed problem. This is further accentuated when the face image is captured under different poses and/or complex illumination conditions. In this paper, we aim to solve the shape recovery problem from a single facial image under these challenging conditions. The local image models for each patch of facial images and the local surface models for each patch of 3D shape are learned using a non-linear dimensionality reduction technique, and the correspondences between these local models are then learned by a manifold alignment method. By combining the local shapes, the global shape of a face can be reconstructed directly using a single least-square system of equations. We perform experiments on synthetic and real data, and validate the algorithm against the ground truth. Experimental results show that our method can yield accurate shape recovery from out-of-training samples with a variety of pose and illumination variations.

Original languageEnglish
Title of host publication2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Pages414-421
Number of pages8
DOIs
StatePublished - 2010
Event2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010 - San Francisco, CA, United States
Duration: Jun 13 2010Jun 18 2010

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2010
Country/TerritoryUnited States
CitySan Francisco, CA
Period6/13/106/18/10

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Learning 3D shape from a single facial image via non-linear manifold embedding and alignment'. Together they form a unique fingerprint.

Cite this