Abstract
Background: Patients with repaired tetralogy of Fallot (rTOF) suffer from progressive ventricular dysfunction decades after their surgical repair. We hypothesized that measures of ventricular strain and dyssynchrony would predict deterioration of ventricular function in patients with rTOF. Methods: A database search identified all patients at a single institution with rTOF who underwent cardiovascular magnetic resonance (CMR) at least twice, >6 months apart, without intervening surgical or catheter procedures. Seven primary predictors were derived from the first CMR using a custom feature tracking algorithm: left (LV), right (RV) and inter-ventricular dyssynchrony, LV and RV peak global circumferential strains, and LV and RV peak global longitudinal strains. Three outcomes were defined, whose changes were assessed over time: RV end-diastolic volume, and RV and LV ejection fraction. Multivariate linear mixed models were fit to investigate relationships of outcomes to predictors and ten potential baseline confounders. Results: One hundred fifty-three patients with rTOF (23 ± 14 years, 50 % male) were included. The mean follow-up duration between the first and last CMR was 2.9 ± 1.3 years. After adjustment for confounders, none of the 7 primary predictors were significantly associated with change over time in the 3 outcome variables. Only 1-17 % of the variability in the change over time in the outcome variables was explained by the baseline predictors and potential confounders. Conclusions: In patients with repaired tetralogy of Fallot, ventricular dyssynchrony and global strain derived from cine CMR were not significantly related to changes in ventricular size and function over time. The ability to predict deterioration in ventricular function in patients with rTOF using current methods is limited.
Original language | English |
---|---|
Article number | 268 |
Journal | Journal of Cardiovascular Magnetic Resonance |
Volume | 18 |
Issue number | 1 |
DOIs | |
State | Published - Aug 22 2016 |
Bibliographical note
Funding Information:This work was supported by a National Institutes of Health (NIH) Director’s Early Independence Award (DP5 OD-012132), NIH grant number KL2 RR033171 from the National Center for Research Resources and the National Center for Advancing Translational Sciences, and American Heart Association Great Rivers Affiliate via grant 14POST20310025. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH.
Publisher Copyright:
© 2016 The Author(s).
Keywords
- Cardiac strain
- Cardiovascular magnetic resonance
- Congenital heart disease
- Dyssynchrony
- Tetralogy of Fallot
ASJC Scopus subject areas
- Radiological and Ultrasound Technology
- Radiology Nuclear Medicine and imaging
- Cardiology and Cardiovascular Medicine