Abstract
We present a collection of geodatabase functions which expedite utilizing differential privacy for privacy-aware geospatial analysis of healthcare data. The healthcare domain has a long history of standardization and research communities have developed open-source common data models to support the larger goals of interoperability, reproducibility, and data sharing; these models also standardize geospatial patient data. However, patient privacy laws and institutional regulations complicate geospatial analyses and dissemination of research findings due to protective restrictions in how data and results are shared. This results in infrastructures with great abilities to organize and store healthcare data, yet which lack the innate ability to produce shareable results that preserve privacy and conform to regulatory requirements. Differential privacy is a model for performing privacy-preserving analytics. We detail our process and findings in inserting an open-source library for differential privacy into a workflow for leveraging a geodatabase for geocoding and analyzing geospatial data stored as part of the Observational Medical Outcomes Partnership (OMOP) common data model. We pilot this process using an open big data repository of addresses.
Original language | English |
---|---|
Title of host publication | Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 |
Editors | Xintao Wu, Chris Jermaine, Li Xiong, Xiaohua Tony Hu, Olivera Kotevska, Siyuan Lu, Weijia Xu, Srinivas Aluru, Chengxiang Zhai, Eyhab Al-Masri, Zhiyuan Chen, Jeff Saltz |
Pages | 3119-3122 |
Number of pages | 4 |
ISBN (Electronic) | 9781728162515 |
DOIs | |
State | Published - Dec 10 2020 |
Event | 8th IEEE International Conference on Big Data, Big Data 2020 - Virtual, Atlanta, United States Duration: Dec 10 2020 → Dec 13 2020 |
Publication series
Name | Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020 |
---|
Conference
Conference | 8th IEEE International Conference on Big Data, Big Data 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Atlanta |
Period | 12/10/20 → 12/13/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
Funding
The project described was supported by the NIH National Center for Advancing Translational Sciences through grant number UL1TR001998.
Funders | Funder number |
---|---|
National Center for Advancing Translational Sciences (NCATS) | UL1TR001998 |
Keywords
- big data applications
- data privacy
- geographic information systems
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Information Systems and Management
- Safety, Risk, Reliability and Quality